
Discrete and Continuous Models

in Population Dynamics

Fabio A. C. C. Chalub � Universidade Nova de Lisboa

DSABNS 2012 � February 2012



The big question
Do we do the right thing?

If population
dynamics is based on
individuals, why do

people use di�erential
equations?
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The big question
The question you never asked your professor...

Where do di�erential equations come from?
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Objectives
...and side e�ects

We will not answer the previous questions. §

But, we will analyze in detail a simple example. ©
We start from a simple model in population dynamics and obtain, in the

end, an ordinary di�erential equations.

As side-e�ects:

1 We establish the validity of the ODE model;

2 We �nd a better di�erential equation. This lead us naturally to

singular partial di�erential equations.
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How to model the evolution?

We consider a

population of N

individuals

of n

di�erent types.

We attribute to

each type a

number, called

�tness.
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How to model the evolution?

The next

generation is

obtained from the

previous one:

each

individual descend

from one of the

types, with

probability

proportional to the

�tness.
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The Wright-Fisher process
General de�nitions

We consider N individuals of n di�erent types.

For each type we de�ne a �tness Ψi .

The state of the population is given by a vector in the n − 1-dimensional

simplex

Sn−1 = {x = (x1, . . . , xn)|
n∑

k=1

xk = 1 , xi ≥ 0} .

The next generation is obtained from the previous one: each individual

descend from one of the types, with probability proportional to the �tness.

The transition probability from a state y to a new state x is given by

ΘN(y→ x) =
N!

(Nx1)!(Nx2)! · · · (Nxn)!

n∏
i=1

(
yiΨ

(i)

Ψ̄

)Nxi

.
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How to obtain the �tness?
A crash course on game theory

We consider two players, with two possible pure strategies, and associate a

pay-o� matrix :

I II

I A B

II C D

, with A,B,C ,D > 0.

We call an Eq-strategist, an individual playing pure strategy I with

probability q and pure strategy II with probability 1− q.

Rationality: Against an Eq-strategist, one chooses the best reply : the

strategy Ep, with p = R(q).

The Nash equilibrium is given by the strategy that is the best reply against

itself : p∗ = R(p∗).

Discrete and Continuous Models FACC Chalub / UNL February 2012 9 / 46



How to obtain the �tness?
A crash course on game theory

We consider two players, with two possible pure strategies, and associate a

pay-o� matrix :

I II

I A B

II C D

, with A,B,C ,D > 0.

We call an Eq-strategist, an individual playing pure strategy I with

probability q and pure strategy II with probability 1− q.

Rationality: Against an Eq-strategist, one chooses the best reply : the

strategy Ep, with p = R(q).

The Nash equilibrium is given by the strategy that is the best reply against

itself : p∗ = R(p∗).

Discrete and Continuous Models FACC Chalub / UNL February 2012 9 / 46



How to obtain the �tness?
A crash course on game theory

We consider two players, with two possible pure strategies, and associate a

pay-o� matrix :

I II

I A B

II C D

, with A,B,C ,D > 0.

We call an Eq-strategist, an individual playing pure strategy I with

probability q and pure strategy II with probability 1− q.

Rationality: Against an Eq-strategist, one chooses the best reply : the

strategy Ep, with p = R(q).

The Nash equilibrium is given by the strategy that is the best reply against

itself : p∗ = R(p∗).

Discrete and Continuous Models FACC Chalub / UNL February 2012 9 / 46



How to obtain the �tness?
A crash course on game theory

We consider two players, with two possible pure strategies, and associate a

pay-o� matrix :

I II

I A B

II C D

, with A,B,C ,D > 0.

We call an Eq-strategist, an individual playing pure strategy I with

probability q and pure strategy II with probability 1− q.

Rationality: Against an Eq-strategist, one chooses the best reply : the

strategy Ep, with p = R(q).

The Nash equilibrium is given by the strategy that is the best reply against

itself : p∗ = R(p∗).

Discrete and Continuous Models FACC Chalub / UNL February 2012 9 / 46



How to obtain the �tness?
A crash course on game theory

In biology, we do not have the rationality assumption: this should be

replaced by a certain kind of �best response dynamics�.

We identify the pay-o� with the �tness (probability to leave descendants in

the next generation).

We de�ne the evolutionary stable strategies (ESS).

Let W(Ep,Eq), be the average pay-o� of an Ep-strategist against a

population of Eq-strategists.

We consider a population of Ep-strategists and a small number of invaders

to this population playing Eq.

We say that Ep is an ESS if and only if:

W(Eq, (1− ε)Ep + εEq)︸ ︷︷ ︸
average invader's pay-o�

<W(Ep, (1− ε)Ep + εEq)︸ ︷︷ ︸
average resident's pay-o�

for any strategy Eq 6= Ep and ε small enough.
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How to obtain the �tness?
A crash course on game theory

We consider that the individuals play a game with two possible pure

strategies, I and II, with associated pay-o� matrix given by

I II

I A B

II C D

, A,B,C ,D > 0 .

We call n the number of type I individuals. Fitnesses are identi�ed with

mean pay-o�:

Ψ(I)(n,N) =
n − 1

N − 1
A +

N − n

N − 1
B ,

Ψ(II)(n,N) =
n

N − 1
C +

N − n − 1

N − 1
D .
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How to obtain the �tness?
A crash course on game theory

For a continuous population the fraction x = n
N

of type I individuals is

given by the replicator equation

ẋ = x
(

Ψ(I) − Ψ̄
)

= x(1− x)(x (A− C )︸ ︷︷ ︸
α

+(1− x) (B − D)︸ ︷︷ ︸
β

) .

When α < 0 and β > 0 (the Hawk-and-Dove game) this equation has

three equilibria: x = 0, x = 1 and x = x∗ = β
β−α ∈ (0, 1).
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2 types Wright-Fisher process

The replicator dynamics

is given by

ẋ = x(1− x)(1− 3x).
The probability

distribution initially

concentrates in three

points: x = 0, x = 1 and

x = x∗ = 1
3 .

Simulation for N = 50, Ψ(A)(x) = 2, Ψ(B)(x) = 1 + 3x
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ẋ = x(1− x)(1− 3x).
The probability

distribution initially

concentrates in three

points: x = 0, x = 1 and

x = x∗ = 1
3 .

Simulation for N = 50, Ψ(A)(x) = 2, Ψ(B)(x) = 1 + 3x

Discrete and Continuous Models FACC Chalub / UNL February 2012 13 / 46



2 types Wright-Fisher process

The replicator dynamics

is given by
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ẋ = x(1− x)(1− 3x).
The probability

distribution initially

concentrates in three

points: x = 0, x = 1 and

x = x∗ = 1
3 .

Simulation for N = 50, Ψ(A)(x) = 2, Ψ(B)(x) = 1 + 3x

Discrete and Continuous Models FACC Chalub / UNL February 2012 13 / 46



2 types Wright-Fisher process

The replicator dynamics

is given by
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ẋ = x(1− x)(1− 3x).
The probability

distribution initially

concentrates in three

points: x = 0, x = 1 and

x = x∗ = 1
3 .

Simulation for N = 50, Ψ(A)(x) = 2, Ψ(B)(x) = 1 + 3x

Discrete and Continuous Models FACC Chalub / UNL February 2012 13 / 46



2 types Wright-Fisher process

The replicator dynamics

is given by
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ẋ = x(1− x)(1− 3x).
The probability

distribution initially

concentrates in three

points: x = 0, x = 1 and

x = x∗ = 1
3 . We

accelerate the evolution

and nothing seems to

happen.

Simulation for N = 50, Ψ(A)(x) = 2, Ψ(B)(x) = 1 + 3x

Discrete and Continuous Models FACC Chalub / UNL February 2012 14 / 46



2 types Wright-Fisher process

The replicator dynamics

is given by
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ẋ = x(1− x)(1− 3x).
The probability

distribution initially

concentrates in three

points: x = 0, x = 1 and

x = x∗ = 1
3 . We

accelerate the evolution

and nothing seems to

happen.

Simulation for N = 50, Ψ(A)(x) = 2, Ψ(B)(x) = 1 + 3x

Discrete and Continuous Models FACC Chalub / UNL February 2012 14 / 46



2 types Wright-Fisher process

The replicator dynamics

is given by
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ẋ = x(1− x)(1− 3x).
The probability

distribution initially

concentrates in three

points: x = 0, x = 1 and

x = x∗ = 1
3 . We

accelerate the evolution

and nothing seems to

happen.

Simulation for N = 50, Ψ(A)(x) = 2, Ψ(B)(x) = 1 + 3x

Discrete and Continuous Models FACC Chalub / UNL February 2012 14 / 46



2 types Wright-Fisher process

The replicator dynamics

is given by
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3 thypes Wright-Fisher process

Now, we consider n = 3 types and de�ne the Rock-Scissor-Paper game:

Fitnesses are calculated from

the matrix:

Rock Scissor Paper

Rock 30 81 29

Scissor 6 30 104

Paper 106 4 30

Ψ(A)(x) = 30x + 81y + 29z ,

Ψ(B)(x) = 6x + 30y + 104z ,

Ψ(C)(x) = 106x + 4y + 30z .
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3 types Wright-Fisher process

The replicator dynamics is given by:

ẋ = x(−74x + 4y − 1 + 75x2 + 96xy + 48y2) ,

ẏ = y(−173x − 122y + 74 + 75x2 + 96xy + 48y2) ,

where x ≥ 0 is the frequency of type 1, y ≥ 0 of type 2 and

z = 1− x − y ≥ 0 (i.e., x + y ≤ 1) of type 3.

The only stationary solutions are:

1 (x , y) = (0, 0), everybody is of type 3;

2 (x , y) = (0, 1), everybody is of type 2;

3 (x , y) = (1, 0), everybody is of type 1;

4 (x , y) =
(
1
3 ,

1
3

)
, a mixed population.
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3 types Wright-Fisher process

The �ow of the replicator dynamics is given by:

The vertexes of

the simplex are

unstable stationary

points, while the

center of the

simplex is the only

stable stationary

point of the

replicator

dynamics.
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3 types Wright-Fisher process

Simulation for

N = 150 and the

pay-o� matrix given

by

 30 81 29
6 30 104
106 4 30

.

The green spot

denotes the average

and the cyan spot the

interior peak.
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The Wright-Fisher process
Transition matrix for two types

Let P(x , t,N,∆t) be the probability of at time t there are xN,

x = 0, 1
N
, . . . , 1, mutants in a population of �xed size N evolving with time

steps of order ∆t.

The evolution is given by

P(x , t,N,∆t) =
∑

y=0, 1
N
,...,1

ΘN(y → x)P(y , t,N,∆t)

The evolution equation can be written

P(t + ∆t) = MP(t)

where

P(t) := (P(0, t,N,∆t),P(1/N, t,N,∆t), · · · ,P(1, t,N,∆t))

and M is a stochastic matrix.

This implies that P(κ∆t) = MκP(0).
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The Wright-Fisher process
Spectral theory

Theorem

lim
κ→∞

Mκ =


1 1− F1 · · · 1− FN
0 0 · · · 0

...

0 F1 · · · FN

 .

where the Fn satisfy Fn =
∑N

m=0 ΘN

(
n
N
→ m

N

)
Fm, with F0 = 0 and

FN = 1.

In particular, any stationary state will be concentrated at the endpoints.

If 1 denotes the vector (1, 1, . . . , 1)†, F = (F0,F1, . . . ,FN)† and if 〈·, ·, 〉
denotes the usual inner product, then we have that 〈P(t), 1〉 = 〈P(0), 1〉
and 〈P(t),F〉 = 〈P(0),F〉.
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Continuous models
General idea: 2 types

We look for a di�erential equation that approximates the discrete evolution

of P when N →∞ and ∆t → 0.

We introduce the following assumptions:

1 The weak selection principle:

lim
N→∞,∆t→0

Ψ(i)(x) = 1 .

More precisely, we assume that Ψ(i)(x) = 1 + (∆t)νψ(i)(x).

2 The limit function p = limN→∞,∆t→0
P

1/N is such that

p

(
x ± 1

N
, t

)
= p(x , t)± 1

N
∂xp(x , t) +

1

2N2
∂2xp(x , t) +O(N−3) ,

p (x , t + ∆t) = p(x , t) + (∆t) ∂tp(x , t) +O
(

(∆t)2
)
.

3 The time-step is such that ε(∆t) = N−µ
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More precisely, we assume that Ψ(i)(x) = 1 + (∆t)νψ(i)(x).

2 The limit function p = limN→∞,∆t→0
P

1/N is such that

p

(
x ± 1

N
, t

)
= p(x , t)± 1

N
∂xp(x , t) +

1

2N2
∂2xp(x , t) +O(N−3) ,

p (x , t + ∆t) = p(x , t) + (∆t) ∂tp(x , t) +O
(

(∆t)2
)
.

3 The time-step is such that ε(∆t) = N−µ
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Continuous models
Formal asymptotic: Wright-Fisher process for two types

Using all these assumptions, we �nd the asymptotic expansion:

∂tp = − 1

(∆t)1−ν
∂x

(
x(1− x)

(
ψ(A)(x)− ψ(B)(x)

)
p
)

+
1

2N∆t
∂2x (x(1− x)p) .

Depending on the choice of µ and ν, we have the di�usion equation

∂tp =
1

2
∂2x (x(1− x)p) ;

the (partial di�erential version of the) replicator equation:

∂tp = −∂x
(
x(1− x)

(
ψ(A)(x)− ψ(B)(x)

)
p
)

;

or the replicator-di�usion equation

∂tp =
ε

2
∂2x (x(1− x)p)− ∂x

(
x(1− x)

(
ψ(A)(x)− ψ(B)(x)

)
p
)
.
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Continuous models
Formal asymptotic: Wright-Fisher process for two types

The invariants become the following conservation laws:

d

dt

∫ 1

0

p(x , t) dx = 0,
d

dt

∫ 1

0

φ(x)p(x , t) dx = 0,

where φ satis�es

ε

2
φ′′ +

(
ψ(A)(x)− ψ(B)(x)

)
φ′ = 0, φ(0) = 0, φ(1) = 1 .

This implies:

φ(x) =

∫ x
0
exp
[
−2
ε

∫ x ′
0

(
ψ(A)(x ′′)− ψ(B)(x ′′)

)
dx ′′
]
dx ′∫ 1

0
exp
[
−2
ε

∫ x ′
0

(
ψ(A)(x ′′)− ψ(B)(x ′′)

)
dx ′′
]
dx ′

.

If we start from the initial condition pI = δx0 , then the �xation probability

is φ(x0).
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Comparisons
The Kimura equation

The equation

∂t f =
ε

2
x(1− x)∂2x f + γx(1− x)∂x f ,

with boundary condition given by f (0, t) = 0 and f (1, t) = 1 is known as

the Kimura equation.

f (x , t) is the �xation probability at time t (or before) associated to the

type 1, when its initial presence is x .

The adjoint of the replicator-di�usion equation generalizes the Kimura

equation for more general �tnesses.

The �nal state is the �nal �xation probability: limt→∞ f (x , t) = φ(x).
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Comparisons
Fixation probability for homogeneous populations

Fixation probability

for N = 20 and

pay-o� matrix(
1 3
4 2

)
. The red

line indicates the

function φ(x) for

ε = 0.1125157473.
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Comparisons
Fixation probability for homogeneous populations

Fixation probability

for N = 50 and

pay-o� matrix(
9 4
2 2

)
. The red

line indicates the

function φ(x) for

ε = 0.04315862961.
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Comparisons
Time evolution in the Wright-Fisher process

Number of individuals

of the �rst type, for

the Wright-Fisher

process with pay-o�

matrix given by(
10 5

5 15

)
, for ten

simulations with

initial conditions of

220/300 individuals

of the �rst type. The

red line indicates the

evolution of the

mean.
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Continuous models
Rigorous asymptotic: the replicator-di�usion equation for two types

Let BM+([0, 1]) denote the positive Radon measures in [0, 1].

Theorem

For a given pI ∈ BM+([0, 1]), there exists a unique (weak) solution p, with
p ∈ L∞

(
[0,∞);BM+([0, 1])

)
and such that p satis�es the conservations laws.

The solution can be written as p(x , t) = r(x , t) + a(t)δ0 + b(t)δ1, where
r ∈ C∞ (R+;C∞([0, 1])) is a classical (regular) solution to the replicator di�usion
equation without boundary conditions, and δy denotes the singular measure
supported at y . We also have that a(t) and b(t), belong to C ([0,∞))∩C∞(R+).
For large time, we have that limt→∞ r(x , t) = 0, uniformly, and that a(t) and
b(t), the transient extinction and �xation probabilities, respectively, are
monotonically increasing functions. Moreover, we have that

lim
t→∞

p(·, t) = π0[pI]δ0 + π1[pI]δ1,

with respect to the Radon metric. Finally, the convergence rate is exponential.
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Continuous models
Rigorous asymptotic: the replicator-di�usion equation for two types

Theorem

Let p(x , t,N,∆t) be the solution of the �nite population dynamics (of

population N, time step ∆t = 1/N), with initial conditions given by

p0(x ,N,∆t) = p0(x), x = 0, 1/N, 2/N, · · · , 1, for p0 as in the previous

theorem. Assume also the weak-selection limit, with ν = 1
2 . Let pcont(x , t)

be the solution of the continuous model, with initial condition given by

p0(x). If we write pni for the i-th component of p(x , t,N,∆t) in the n-th

iteration, we have, for any t∗ > 0, that

lim
N→∞

ptN
2

xN = pcont(x , t), x ∈ [0, 1], t ∈ [0, t∗].
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The Wright-Fisher process
From the discrete to the continuous

We look for a simpler model for intermediate populations.

This means that we look for a di�erential equation for the fraction of type

i individuals. This equation should present two time-scales associated to

two di�erent phenomena:

1 The �rst time scale will represent the natural selection;

Replicator Equation

2 The second time scale will represent the genetic drift.

Di�usion to the vertexes of the simplex (pure states)

Let the n − 1-dimensional simplex be

Sn−1 := {x ∈ Rn||x| :=
n∑

i=1

xi = 1, xi ≥ 0,∀i = 1, · · · , n} .
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The Wright-Fisher process
From the discrete to the continuous

We consider the discrete evolution (|y| =
∑

i yi )

pN(x, t+∆t) =
∑
|y |=1

ΘN(y→ x)pN(t, y) =
∑
|y |=0

ΘN(x−y→ x)pN(t, x−y) .

We assume the weak selection principle φ(i)(y) = 1 + ψ(i)(y)
N

, and then

φ̄(y) = 1 + ψ̄(y)
N

. This implies that

(
yiφ

(i)

φ̄

)Nxi

≈ exp

{
Nxi

[
log yi + log

(
1 +

ψ(i)(y)

N

)(
1− ψ̄(y)

N
+
ψ̄2(y)

N2

)]}
≈ yNxi

i exp

[
xi

(
ψ(i)(y)− ψ̄ (y)

)
+

xi ψ̄

N

(
ψ̄(y)− ψ(i)(y)

)]
.
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The Wright-Fisher process
From the discrete to the continuous

Using the Stirling formula x! ≈
√
2πxxxe−x we write

N!

(Nx1)!(Nx2)! · · · (Nxn)!
≈ (2π)

1−n
2

Nn−1
N

n−1
2

(x1x2 · · · xn)
1
2 xx1N1 xx2N2 · · · xxnNn

.
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The Wright-Fisher process
From the discrete to the continuous

Finally, we have

ΘN(y→ x) ≈ 1

Nn−1 Λ(y, x,N−
1
2 )
(
1 + Ξ(y, x,N−

1
2 ) + o(N−1)

)
,

where

Λ(y, x, z) :=
(2π)

1−n
2 z1−n

(x1x2 · · · xn)
1
2

n∏
i=1

(
yi
xi

) xi
z2

Ξ(y, x, z) :=
n∑

i=1

[
xi

(
ψ(i)(y)− ψ̄ (y)

)
+ z2xi ψ̄(y)

(
ψ̄(y)− ψ(i)(y)

)]
.

Note that Ξ is associated to the drift generated by the �tness; i.e., if

ψ(i)(y) is constant, then Ξ(y, x,N) = 0.
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The Wright-Fisher process
From the discrete to the continuous

We introduce the new variables τi = yi
√
N and z = 1√

N
.

Lemma

For large N (and then small z) the neutral transition probability Λ scales as

Λ(x− zτ , x, z) ≈ (2π)
1−n
2 z1−n

(x1x2 · · · xn)
1
2

exp

(
−1

2
Q(τ , τ )

)
,

where Q is a quadratic form with associated eigenvalues λ1, · · · , λn−1.
These eigenvalues are the eigenvalues of the matrix F = (Fij),
i , j = 1, · · · , n− 1, such that Fii = x−1i + x−1n and Fij = x−1n , for i 6= j , i.e.,

λ1 · · ·λn−1 = (x1 · · · xn)−1. This implies that∫
Rn−1

exp

(
−1

2
Q(τ , τ )

)
dτ = (2π)

n−1

2

√
x1 · · · xn .
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The Wright-Fisher process
From the discrete to the continuous

Lemma

For large N (and then small z) the neutral transition probability Λ has the
following �rst moments:

zn−1
∫

Λ(x, x + zτ , z)dτ =

∫
Λ(x, x + y, z)dy = 1 ,

zn

∫
τiΛ(x, x + zτ , z)dτ = 0 ,

zn+1

∫
τiτjΛ(x, x + zτ , z)dτ = o(z3) + z2 ×

{
(−xixj ) if i 6= j , i , j ≤ n − 1 ,
xi (1− xi ) if i = j ≤ n − 1 .
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The Wright-Fisher process
From the discrete to the continuous

We write the following equation for an appropriate test function g :∫
p(x, t + ∆t)g(x)dx ≈

∫∫
ΘN(x− y→ x)p(x− y, t)Nn−1g(x)dxdy

≈ 1

zn−1

∫∫
Θ 1

z2
(x− zτ → x)p(x− zτ , t)g(x)dτdx

≈ zn−1
∫∫

[1 + Ξ(x− zτ , x, z)] Λ(x− zτ , x, z)p(x− zτ , t)g(x)dτdx

= zn−1
∫∫

[1 + Ξ(x, x + zτ , z)] Λ(x, x + zτ , z)p(x, t)g(x + zτ )dτdx

≈ zn−1
∫∫ [

1 + z

n∑
i=1

τi

(
ψ(i)(x)− ψ̄(x)

)
+ o(z3)

]
Λ(x, x + zτ , z)p(x, t)

×

g(x, t) + z

n−1∑
j=1

τj∂xj g(x) +
z2

2

n−1∑
k,l=1

τkτl∂
2

xkxk
g(x)

dτdx
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The Wright-Fisher process
From the discrete to the continuous

∫
p(x, t + ∆t)g(x)dx

≈ zn−1
∫∫

Λ(x, x + zτ , z)p(x, t)g(x)dτdx

∫
p(x, t)g(x)dx

+ zn

∫∫
p(x, t)

 n∑
i=1

(
ψ(i)(x)− ψ̄(x)

)
τi +

n−1∑
j=1

τj∂xj g(x)

Λ(x, x + zτ , z)dτdx

0

+ zn+1

∫∫
p(x, t)

 n−1∑
k,l=1

τkτl
2
∂2xkxl g(x) +

n∑
i=1

n−1∑
j=1

∂xj g(x)(ψ(i)(x)− ψ̄(x))τiτj


× Λ(x, x + zτ , z)dτdx .
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The Wright-Fisher process
From the discrete to the continuous

∫
p(x, t + ∆t)g(x)dx

≈
∫

p(x, t)g(x)dx

+ 0

+ z2
∫

g(x)

[
1

2

n−1∑
k=1

∂2xk (xk(1− xk)p(x, t))− 1

2

n−1∑
k,l=1,k 6=l

∂2xkxl (xkxlp(x, t))

−
n−1∑
j=1

∂xj

(
xj

(
ψ(j)(x)− ψ̄(x)

)
p(x, t)

)]
dx .
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The Wright-Fisher process
From the discrete to the continuous

Imposing ∆t = z2 = 1
N
, we have

∂tp =
1

2

n−1∑
k=1

∂2xk (xk(1− xk)p(x, t))− 1

2

n−1∑
k,l=1,k 6=l

∂2xkxl (xkxlp(x, t))

−
n−1∑
j=1

∂xj

(
xj

(
ψ(j)(x)− ψ̄(x)

)
p(x, t)

)
We call this equation the replicator-di�usion equation:

∂tp =
1

2

n−1∑
i ,j=1

∂2xixj (Dijp)−
n−1∑
i=1

∂xi (Ωip) .
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Short-term dynamics
The replicator equation appears...

The replicator-di�usion equation is given by

1

ε

∂tp =
1

2

n−1∑
k=1

∂2xk (xk(1− xk)p(x, t))

− 1

2

n−1∑
k,l=1,k 6=l

∂2xkxl (xkxlp(x, t))−

1

ε

n−1∑
j=1

∂xj

(
xj

(
ψ(j)(x)− ψ̄(x)

)
p(x, t)

)

If we consider strong selection (ψ → ψ
ε ) and short times (t → εt) for a

very small ε we �nd for ε→ 0

∂tp = −
n−1∑
j=1

∂xj

(
xj

(
ψ(j)(x)− ψ̄(x)

)
p(x, t)

)
This equation is equivalent to the replicator dynamics.
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Long-term dynamics
Mixed states fade away...

Theorem

Let p be the solution of replicator-di�usion equation. Then,

p∞ := limt→∞ p(·, t), is a linear combination of Dirac-deltas supported at

the vertexes of the simplex.

We change variables and re-write the replicator-di�usion equation as

∂tu =
1

ω
∇ ·
[
ω

(
1

2
D∇u − Bu

)]
,

where u = e
−θp/λ, ω = e

θ/λ, with λ = x1x2 · · · xn and ∇θ and B are

associated to the Hodges decomposition of the drift part. This operator

is negative-de�nite and there exists α > 0, such that

1

2
∂t

∫
u2ωdV =

∫
Sn

∇ ·
[
ω

(
1

2
D∇u − Bu

)]
u dV < −α

∫
Sn

u2ω dV .
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Long-term dynamics
Mixed states fade away...

Then ∫
p2e−θλdx =

∫
u2ωdx

t→∞→ 0 ,

and, together with the conservation laws ∂t
∫
φipdx = 0, i = 1, . . . , n we

have that p concentrates on the zeros of λ, i.e., the boundary of the

simplex.

This is interpreted as the extinction of one type. We iterate this

reasoning n − 1 times and conclude that all but one type will be extinct,

i.e., p concentrates on the vertexes of the simplex. Thus, we postulate

that the �nal state is given by

p∞ =
∑
v∈V

cvδv ,

where V is the set of all vertexes of the simplex Sn.
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Short-term dynamics
The replicator equation appears...

Theorem

Let p0 be the solution of the replicator-di�usion equation, with ε = 0 and

let pε be a solution to replicator-di�usion equation, with ε > 0. Then,

there exits a C such that, for τ ≤ C, we have

‖pε(·, τ)− p0(·, τ)‖∞ ≤ Cε.

Thus p0 is the leading order asymptotic approximation to pε, for t < εC.

De�ne wε = pε − p0, and

∂twε =
ε

2

n−1∑
i,j=1

∂ij (Dijwε)−
n−1∑
i=1

∂xi (Ωiwε) +
ε

2

n−1∑
i,j=1

∂xi xj (Dijp0) , wε|t=0 = 0
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Generalizing Kimura Equation
General �tness function and n types

The dual of the replicator-di�usion equation generalizes the Kimura
equation for n types and general �tness:

∂t f =
ε

2

n−1∑
k=1

xk(1− xk)∂2k f −
1

2

n−1∑
k,l=1;k 6=l

xkxl∂
2

kl f +
n−1∑
j=1

xj

(
ψ(j)(x)− ψ̄(x)

)
∂j f

The function f gives the �xation probability of a given type. The precise

type will be �xed by the boundary conditions imposed to f .
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Generalizing Kimura Equation
General �tness function and n types

For example, let us consider f as the �nal �xation probability of type 3 in

the Rock-Scissor-Paper game.

Then, f is the solution of the generalized Kimura equation in the simplex

with boundary conditions given by:

1 f = 0 on the face opposed to the vertex representing type 3;
2 On the faces 1-3 and 2-3 f is the solution of the generalized Kimura

equation with boundary conditions given by

1 f |3 = 1;
2 f |1,2 = 0.
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Conclusions

We constructed a degenerated parabolic partial di�erential equation
that works as an approximation of the discrete Wright-Fisher
processes. This PDE is such that

it is de�ned in the simplex;
it does not need boundary conditions;
the conservation laws from the discrete dynamics guarantee the
uniqueness of solution;
the initial dynamics is given by the replicator dynamics;
the �nal state is a superposition of Dirac deltas at the vertexes of the
simplex;
these Dirac deltas are generated in �nite time (in fact, at t = 0+!);
the associated hyperbolic equation (limit of no di�usion) is more
regular than the parabolic equation.

THE END
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