Discrete and Continuous Models in Population Dynamics

Fabio A. C. C. Chalub - Universidade Nova de Lisboa

DSABNS 2012 - February 2012

The big question

Do we do the right thing?

> If population dynamics is based on individuals, why do people use differential equations?

The big question

The question you never asked your professor...

Where do differential equations come from?

Objectives

...and side effects

We will not answer the previous questions. \odot

Objectives

...and side effects

We will not answer the previous questions. \odot
But, we will analyze in detail a simple example.

Objectives

...and side effects

We will not answer the previous questions. \square
But, we will analyze in detail a simple example.

We start from a simple model in population dynamics and obtain, in the end, an ordinary differential equations.

Objectives

...and side effects

We will not answer the previous questions. \square
But, we will analyze in detail a simple example.

We start from a simple model in population dynamics and obtain, in the end, an ordinary differential equations.

As side-effects:

Objectives

...and side effects

We will not answer the previous questions. \square
But, we will analyze in detail a simple example.

We start from a simple model in population dynamics and obtain, in the end, an ordinary differential equations.

As side-effects:
(1) We establish the validity of the ODE model;

Objectives

...and side effects

We will not answer the previous questions. \odot
But, we will analyze in detail a simple example.

We start from a simple model in population dynamics and obtain, in the end, an ordinary differential equations.

As side-effects:
(1) We establish the validity of the ODE model;
(2) We find a better differential equation. This lead us naturally to singular partial differential equations.

$$
\begin{aligned}
& \text { oo80000 } \\
& 080008
\end{aligned}
$$

0000 8i8:88\%

How to model the evolution?

We consider a population of N individuals of n different types. We attribute to each type a number, called fitness.

$$
\begin{aligned}
& 000000= \\
& 08000= \\
& 080000 \\
& 080000 \\
& 08000
\end{aligned}
$$

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

How to model the evolution?

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

The Wright-Fisher process

General definitions

We consider N individuals of n different types.

The Wright-Fisher process

General definitions
We consider N individuals of n different types.
For each type we define a fitness Ψ_{i}.

The Wright-Fisher process

General definitions
We consider N individuals of n different types.
For each type we define a fitness Ψ_{i}.
The state of the population is given by a vector in the n-1-dimensional simplex

$$
S^{n-1}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{k=1}^{n} x_{k}=1, x_{i} \geq 0\right\}
$$

The Wright-Fisher

process

General definitions

We consider N individuals of n different types.
For each type we define a fitness Ψ_{i}.
The state of the population is given by a vector in the n-1-dimensional simplex

$$
S^{n-1}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{k=1}^{n} x_{k}=1, x_{i} \geq 0\right\}
$$

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness.

The Wright-Fisher

process

General definitions

We consider N individuals of n different types.
For each type we define a fitness Ψ_{i}.
The state of the population is given by a vector in the n-1-dimensional simplex

$$
S^{n-1}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{k=1}^{n} x_{k}=1, x_{i} \geq 0\right\}
$$

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness. The transition probability from a state \mathbf{y} to a new state \mathbf{x} is given by

$$
\Theta_{N}(\mathbf{y} \rightarrow \mathbf{x})=\frac{N!}{\left(N x_{1}\right)!\left(N x_{2}\right)!\cdots\left(N x_{n}\right)!} \prod_{i=1}^{n}\left(\frac{y_{i} \Psi^{(i)}}{\bar{\Psi}}\right)^{N x_{i}}
$$

How to obtain the fitness?

A crash course on game theory

We consider two players, with two possible pure strategies, and associate a pay-off matrix:

with $A, B, C, D>0$.

How to obtain the fitness?

A crash course on game theory

We consider two players, with two possible pure strategies, and associate a pay-off matrix:

	I	II
I	A	B
II	C	D

with $A, B, C, D>0$.

We call an E_{q}-strategist, an individual playing pure strategy I with probability q and pure strategy II with probability $1-q$.

How to obtain the fitness?

A crash course on game theory

We consider two players, with two possible pure strategies, and associate a pay-off matrix:

	I	II
I	A	B
II	C	D

$$
\text { with } A, B, C, D>0 \text {. }
$$

We call an E_{q}-strategist, an individual playing pure strategy I with probability q and pure strategy II with probability $1-q$.
Rationality: Against an E_{q}-strategist, one chooses the best reply: the strategy E_{p}, with $p=\mathcal{R}(q)$.

How to obtain the fitness?

A crash course on game theory

We consider two players, with two possible pure strategies, and associate a pay-off matrix:

	I	II
I	A	B
II	C	D

with $A, B, C, D>0$.

We call an E_{q}-strategist, an individual playing pure strategy I with probability q and pure strategy II with probability $1-q$.
Rationality: Against an E_{q}-strategist, one chooses the best reply: the strategy E_{p}, with $p=\mathcal{R}(q)$.
The Nash equilibrium is given by the strategy that is the best reply against itself: $p^{*}=\mathcal{R}\left(p^{*}\right)$.

How to obtain the fitness?

A crash course on game theory
In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".

How to obtain the fitness?

A crash course on game theory
In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".
We identify the pay-off with the fitness (probability to leave descendants in the next generation).

How to obtain the fitness?

A crash course on game theory
In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".
We identify the pay-off with the fitness (probability to leave descendants in the next generation).
We define the evolutionary stable strategies (ESS).

How to obtain the fitness?

A crash course on game theory
In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".

We identify the pay-off with the fitness (probability to leave descendants in the next generation).
We define the evolutionary stable strategies (ESS).
Let $\mathcal{W}\left(E_{p}, E_{q}\right)$, be the average pay-off of an E_{p}-strategist against a population of E_{q}-strategists.

How to obtain the fitness?

A crash course on game theory

In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".
We identify the pay-off with the fitness (probability to leave descendants in the next generation).
We define the evolutionary stable strategies (ESS).
Let $\mathcal{W}\left(E_{p}, E_{q}\right)$, be the average pay-off of an E_{p}-strategist against a population of E_{q}-strategists.
We consider a population of E_{p}-strategists and a small number of invaders to this population playing E_{q}.

How

 to obtain the fitness?
A crash course on game theory

In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".
We identify the pay-off with the fitness (probability to leave descendants in the next generation).
We define the evolutionary stable strategies (ESS).
Let $\mathcal{W}\left(E_{p}, E_{q}\right)$, be the average pay-off of an E_{p}-strategist against a population of E_{q}-strategists.
We consider a population of E_{p}-strategists and a small number of invaders to this population playing E_{q}.
We say that E_{p} is an ESS if and only if:

$$
\underbrace{\mathcal{W}\left(E_{q},(1-\varepsilon) E_{p}+\varepsilon E_{q}\right)}_{\text {average invader's pay-off }}<\underbrace{\mathcal{W}\left(E_{p},(1-\varepsilon) E_{p}+\varepsilon E_{q}\right)}_{\text {average resident's pay-off }}
$$

for any strategy $E_{q_{q}} \neq E_{p}$ and ε small enough.

How to obtain the fitness?

A crash course on game theory

We consider that the individuals play a game with two possible pure strategies, I and II, with associated pay-off matrix given by

	I	II
I	A	B
II	C	D

How to obtain the fitness?

A crash course on game theory

We consider that the individuals play a game with two possible pure strategies, I and II, with associated pay-off matrix given by

	I	II
I	A	B
II	C	D

We call n the number of type I individuals. Fitnesses are identified with mean pay-off:

$$
\begin{aligned}
\Psi^{(\mathrm{I})}(n, N) & =\frac{n-1}{N-1} A+\frac{N-n}{N-1} B \\
\Psi^{(\mathrm{II})}(n, N) & =\frac{n}{N-1} C+\frac{N-n-1}{N-1} D .
\end{aligned}
$$

How to obtain the fitness?

A crash course on game theory

For a continuous population the fraction $x=\frac{n}{N}$ of type \mathbf{I} individuals is given by the replicator equation

$$
\dot{x}=x\left(\Psi^{(\mathrm{I})}-\bar{\Psi}\right)
$$

How to obtain the fitness?

A crash course on game theory

For a continuous population the fraction $x=\frac{n}{N}$ of type \mathbf{I} individuals is given by the replicator equation

$$
\dot{x}=x\left(\Psi^{(\mathrm{I})}-\bar{\Psi}\right)=x(1-x)(x \underbrace{(A-C)}_{\alpha}+(1-x) \underbrace{(B-D)}_{\beta}) .
$$

How to obtain the fitness?

A crash course on game theory

For a continuous population the fraction $x=\frac{n}{N}$ of type \mathbf{I} individuals is given by the replicator equation

$$
\dot{x}=x\left(\Psi^{(\mathrm{I})}-\bar{\Psi}\right)=x(1-x)(x \underbrace{(A-C)}_{\alpha}+(1-x) \underbrace{(B-D)}_{\beta}) .
$$

When $\alpha<0$ and $\beta>0$ (the Hawk-and-Dove game) this equation has three equilibria: $x=0, x=1$ and $x=x^{*}=\frac{\beta}{\beta-\alpha} \in(0,1)$.

2 types Wright-Fisher process

time $=0$

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types

process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates...

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

2 types Wright-Fisher
 process

The replicator dynamics is given by
$\dot{x}=x(1-x)(1-3 x)$.
The probability distribution initially concentrates in three points: $x=0, x=1$ and $x=x^{*}=\frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates. . .

Simulation for $N=50, \Psi^{(\mathbb{A})}(x)=2, \Psi^{(\mathbb{B})}(x)=1+3 x$

3 thypes Wright-Fisher process

Now, we consider $n=3$ types and define the Rock-Scissor-Paper game:

3 thypes Wright-Fisher process

Now, we consider $n=3$ types and define the Rock-Scissor-Paper game:
Fitnesses are calculated from the matrix:

Scissors

	Rock	Scissor	Paper
Rock	30	81	29
Scissor	6	30	104
Paper	106	4	30
$\Psi^{(\mathbb{A})}(x)=30 x+81 y+29 z$,			
$\Psi^{(\mathbb{B})}(x)=6 x+30 y+104 z$,			
$\Psi^{(\mathbb{C})}(x)=106 x+4 y+30 z$.			

3 types Wright-Fisher process

The replicator dynamics is given by:

$$
\begin{aligned}
& \dot{x}=x\left(-74 x+4 y-1+75 x^{2}+96 x y+48 y^{2}\right) \\
& \dot{y}=y\left(-173 x-122 y+74+75 x^{2}+96 x y+48 y^{2}\right)
\end{aligned}
$$

where $x \geq 0$ is the frequency of type $1, y \geq 0$ of type 2 and $z=1-x-y \geq 0$ (i.e., $x+y \leq 1$) of type 3 .

3 types Wright-Fisher process

The replicator dynamics is given by:

$$
\begin{aligned}
& \dot{x}=x\left(-74 x+4 y-1+75 x^{2}+96 x y+48 y^{2}\right) \\
& \dot{y}=y\left(-173 x-122 y+74+75 x^{2}+96 x y+48 y^{2}\right)
\end{aligned}
$$

where $x \geq 0$ is the frequency of type $1, y \geq 0$ of type 2 and $z=1-x-y \geq 0$ (i.e., $x+y \leq 1$) of type 3 .
The only stationary solutions are:

3 types Wright-Fisher

The replicator dynamics is given by:

$$
\begin{aligned}
& \dot{x}=x\left(-74 x+4 y-1+75 x^{2}+96 x y+48 y^{2}\right) \\
& \dot{y}=y\left(-173 x-122 y+74+75 x^{2}+96 x y+48 y^{2}\right)
\end{aligned}
$$

where $x \geq 0$ is the frequency of type $1, y \geq 0$ of type 2 and $z=1-x-y \geq 0$ (i.e., $x+y \leq 1$) of type 3 .
The only stationary solutions are:
(1) $(x, y)=(0,0)$, everybody is of type 3 ;

3 types Wright-Fisher

The replicator dynamics is given by:

$$
\begin{aligned}
& \dot{x}=x\left(-74 x+4 y-1+75 x^{2}+96 x y+48 y^{2}\right) \\
& \dot{y}=y\left(-173 x-122 y+74+75 x^{2}+96 x y+48 y^{2}\right),
\end{aligned}
$$

where $x \geq 0$ is the frequency of type $1, y \geq 0$ of type 2 and $z=1-x-y \geq 0$ (i.e., $x+y \leq 1$) of type 3 .
The only stationary solutions are:
(1) $(x, y)=(0,0)$, everybody is of type 3 ;
(2) $(x, y)=(0,1)$, everybody is of type 2 ;

3 types Wright-Fisher

The replicator dynamics is given by:

$$
\begin{aligned}
& \dot{x}=x\left(-74 x+4 y-1+75 x^{2}+96 x y+48 y^{2}\right) \\
& \dot{y}=y\left(-173 x-122 y+74+75 x^{2}+96 x y+48 y^{2}\right)
\end{aligned}
$$

where $x \geq 0$ is the frequency of type $1, y \geq 0$ of type 2 and $z=1-x-y \geq 0$ (i.e., $x+y \leq 1$) of type 3 .
The only stationary solutions are:
(1) $(x, y)=(0,0)$, everybody is of type 3 ;
(2) $(x, y)=(0,1)$, everybody is of type 2 ;
(3) $(x, y)=(1,0)$, everybody is of type 1 ;

3 types Wright-Fisher

The replicator dynamics is given by:

$$
\begin{aligned}
& \dot{x}=x\left(-74 x+4 y-1+75 x^{2}+96 x y+48 y^{2}\right) \\
& \dot{y}=y\left(-173 x-122 y+74+75 x^{2}+96 x y+48 y^{2}\right)
\end{aligned}
$$

where $x \geq 0$ is the frequency of type $1, y \geq 0$ of type 2 and $z=1-x-y \geq 0$ (i.e., $x+y \leq 1$) of type 3 .
The only stationary solutions are:
(1) $(x, y)=(0,0)$, everybody is of type 3 ;
(2) $(x, y)=(0,1)$, everybody is of type 2 ;
(3) $(x, y)=(1,0)$, everybody is of type 1 ;
(a) $(x, y)=\left(\frac{1}{3}, \frac{1}{3}\right)$, a mixed population.

3 types Wright-Fisher process

The flow of the replicator dynamics is given by:

3 types Wright-Fisher
 process

The flow of the replicator dynamics is given by:

The vertexes of the simplex are unstable stationary points, while the center of the simplex is the only stable stationary point of the replicator dynamics.

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

3 types Wright-Fisher process

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=10$	Simulation for $N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$
The green spot	

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=11$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=12$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=14$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=15$ | Simulation for |
| :--- |
| $N=150$ and the |
| pay-off matrix given |
| by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$ |

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=16$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=17$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=18$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=21$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=22$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=23$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=24$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=25$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=26$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=27$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=28$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=29$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=32$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=34$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=41$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=42$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=43$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=44$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=47$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=48$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

\quad Rock-Scissor-Paper game: time $=49$	Simulation for $N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$

3 types Wright-Fisher process

3 types Wright-Fisher process

	Simulation for $N=150$ and the
Rock-Scissor-Paper game: time $=57$	

3 types Wright-Fisher process

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=70$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=71$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=72$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=73$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=74$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=75$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=76$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=77$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=78$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

3 types Wright-Fisher process

3 types Wright-Fisher process

Rock-Scissor-Paper game: time $=94$

Simulation for
$N=150$ and the pay-off matrix given by $\left(\begin{array}{ccc}30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30\end{array}\right)$.

The green spot denotes the average and the cyan spot the interior peak.

3 types Wright-Fisher process

The Wright-Fisher process

Transition matrix for two types
Let $P(x, t, N, \Delta t)$ be the probability of at time t there are $x N$, $x=0, \frac{1}{N}, \ldots, 1$, mutants in a population of fixed size N evolving with time steps of order Δt.

The Wright-Fisher process

Transition matrix for two types
Let $P(x, t, N, \Delta t)$ be the probability of at time t there are $x N$, $x=0, \frac{1}{N}, \ldots, 1$, mutants in a population of fixed size N evolving with time steps of order Δt. The evolution is given by

$$
P(x, t, N, \Delta t)=\sum_{y=0, \frac{1}{N}, \ldots, 1} \Theta_{N}(y \rightarrow x) P(y, t, N, \Delta t)
$$

The Wright-Fisher process

Transition matrix for two types

Let $P(x, t, N, \Delta t)$ be the probability of at time t there are $x N$, $x=0, \frac{1}{N}, \ldots, 1$, mutants in a population of fixed size N evolving with time steps of order Δt. The evolution is given by

$$
P(x, t, N, \Delta t)=\sum_{y=0, \frac{1}{N}, \ldots, 1} \Theta_{N}(y \rightarrow x) P(y, t, N, \Delta t)
$$

The evolution equation can be written

$$
\mathbf{P}(t+\Delta t)=\mathbf{M P}(t)
$$

where

$$
\mathbf{P}(t):=(P(0, t, N, \Delta t), P(1 / N, t, N, \Delta t), \cdots, P(1, t, N, \Delta t))
$$

and M is a stochastic matrix.

The Wright-Fisher process

Transition matrix for two types

Let $P(x, t, N, \Delta t)$ be the probability of at time t there are $x N$, $x=0, \frac{1}{N}, \ldots, 1$, mutants in a population of fixed size N evolving with time steps of order Δt. The evolution is given by

$$
P(x, t, N, \Delta t)=\sum_{y=0, \frac{1}{N}, \ldots, 1} \Theta_{N}(y \rightarrow x) P(y, t, N, \Delta t)
$$

The evolution equation can be written

$$
\mathbf{P}(t+\Delta t)=\mathbf{M P}(t)
$$

where

$$
\mathbf{P}(t):=(P(0, t, N, \Delta t), P(1 / N, t, N, \Delta t), \cdots, P(1, t, N, \Delta t))
$$

and M is a stochastic matrix.
$\underset{\text { Tiscrete and continu that Models }}{\text { This }}(\kappa \Delta t)=\mathrm{M}^{\kappa} \mathcal{P}(0)$.

The Wright-Fisher

Spectral theory

Theorem

$$
\lim _{\kappa \rightarrow \infty} \mathbf{M}^{\kappa}=\left(\begin{array}{cccc}
1 & 1-F_{1} & \cdots & 1-F_{N} \\
0 & 0 & \cdots & 0 \\
& & \vdots & \\
0 & F_{1} & \cdots & F_{N}
\end{array}\right)
$$

where the F_{n} satisfy $F_{n}=\sum_{m=0}^{N} \Theta_{N}\left(\frac{n}{N} \rightarrow \frac{m}{N}\right) F_{m}$, with $F_{0}=0$ and $F_{N}=1$. In particular, any stationary state will be concentrated at the endpoints. If $\mathbf{1}$ denotes the vector $(1,1, \ldots, 1)^{\dagger}, \mathbf{F}=\left(F_{0}, F_{1}, \ldots, F_{N}\right)^{\dagger}$ and if $\langle\cdot, \cdot$, denotes the usual inner product, then we have that $\langle\mathbf{P}(t), \mathbf{1}\rangle=\langle\mathbf{P}(0), \mathbf{1}\rangle$ and $\langle\mathbf{P}(\mathbf{t}), \mathbf{F}\rangle=\langle\mathbf{P}(\mathbf{0}), \mathbf{F}\rangle$.

Continuous models

General idea: 2 types
We look for a differential equation that approximates the discrete evolution of P when $N \rightarrow \infty$ and $\Delta t \rightarrow 0$.

Continuous models

General idea: 2 types
We look for a differential equation that approximates the discrete evolution of P when $N \rightarrow \infty$ and $\Delta t \rightarrow 0$.
We introduce the following assumptions:

Continuous models

General idea: 2 types
We look for a differential equation that approximates the discrete evolution of P when $N \rightarrow \infty$ and $\Delta t \rightarrow 0$.
We introduce the following assumptions:
(1) The weak selection principle:

$$
\lim _{N \rightarrow \infty, \Delta t \rightarrow 0} \Psi^{(i)}(x)=1
$$

More precisely, we assume that $\psi^{(i)}(x)=1+(\Delta t)^{\nu} \psi^{(i)}(x)$.

Continuous models

General idea: 2 types

We look for a differential equation that approximates the discrete evolution of P when $N \rightarrow \infty$ and $\Delta t \rightarrow 0$.
We introduce the following assumptions:
(1) The weak selection principle:

$$
\lim _{N \rightarrow \infty, \Delta t \rightarrow 0} \Psi^{(i)}(x)=1
$$

More precisely, we assume that $\psi^{(i)}(x)=1+(\Delta t)^{\nu} \psi^{(i)}(x)$.
(2) The limit function $p=\lim _{N \rightarrow \infty, \Delta t \rightarrow 0} \frac{P}{1 / N}$ is such that

$$
\begin{aligned}
p\left(x \pm \frac{1}{N}, t\right) & =p(x, t) \pm \frac{1}{N} \partial_{x} p(x, t)+\frac{1}{2 N^{2}} \partial_{x}^{2} p(x, t)+\mathcal{O}\left(N^{-3}\right) \\
p(x, t+\Delta t) & =p(x, t)+(\Delta t) \partial_{t} p(x, t)+\mathcal{O}\left((\Delta t)^{2}\right)
\end{aligned}
$$

Continuous models

General idea: 2 types

We look for a differential equation that approximates the discrete evolution of P when $N \rightarrow \infty$ and $\Delta t \rightarrow 0$.
We introduce the following assumptions:
(1) The weak selection principle:

$$
\lim _{N \rightarrow \infty, \Delta t \rightarrow 0} \Psi^{(i)}(x)=1
$$

More precisely, we assume that $\psi^{(i)}(x)=1+(\Delta t)^{\nu} \psi^{(i)}(x)$.
(2) The limit function $p=\lim _{N \rightarrow \infty, \Delta t \rightarrow 0} \frac{P}{1 / N}$ is such that

$$
\begin{aligned}
& p\left(x \pm \frac{1}{N}, t\right)=p(x, t) \pm \frac{1}{N} \partial_{x} p(x, t)+\frac{1}{2 N^{2}} \partial_{x}^{2} p(x, t)+\mathcal{O}\left(N^{-3}\right) \\
& p(x, t+\Delta t)=p(x, t)+(\Delta t) \partial_{t} p(x, t)+\mathcal{O}\left((\Delta t)^{2}\right)
\end{aligned}
$$

(3) The time-step is such that $\varepsilon(\Delta t)=N^{-\mu}$

Continuous models

Formal asymptotic: Wright-Fisher process for two types
Using all these assumptions, we find the asymptotic expansion:

$$
\partial_{t} p=-\frac{1}{(\Delta t)^{1-\nu}} \partial_{x}\left(x(1-x)\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) p\right)+\frac{1}{2 N \Delta t} \partial_{x}^{2}(x(1-x) p) .
$$

Continuous models

Formal asymptotic: Wright-Fisher process for two types
Using all these assumptions, we find the asymptotic expansion:
$\partial_{t} p=-\frac{1}{(\Delta t)^{1-\nu}} \partial_{x}\left(x(1-x)\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) p\right)+\frac{1}{2 N \Delta t} \partial_{x}^{2}(x(1-x) p)$.
Depending on the choice of μ and ν, we have

Continuous models

Formal asymptotic: Wright-Fisher process for two types
Using all these assumptions, we find the asymptotic expansion:
$\partial_{t} p=-\frac{1}{(\Delta t)^{1-\nu}} \partial_{x}\left(x(1-x)\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) p\right)+\frac{1}{2 N \Delta t} \partial_{x}^{2}(x(1-x) p)$.
Depending on the choice of μ and ν, we have the diffusion equation

$$
\partial_{t} p=\frac{1}{2} \partial_{x}^{2}(x(1-x) p) ;
$$

Continuous models

Formal asymptotic: Wright-Fisher process for two types
Using all these assumptions, we find the asymptotic expansion:

$$
\partial_{t} p=-\frac{1}{(\Delta t)^{1-\nu}} \partial_{x}\left(x(1-x)\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) p\right)+\frac{1}{2 N \Delta t} \partial_{x}^{2}(x(1-x) p) .
$$

Depending on the choice of μ and ν, we have the diffusion equation

$$
\partial_{t} p=\frac{1}{2} \partial_{x}^{2}(x(1-x) p) ;
$$

the (partial differential version of the) replicator equation:

$$
\partial_{t} p=-\partial_{x}\left(x(1-x)\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) p\right) ;
$$

Continuous models

Formal asymptotic: Wright-Fisher process for two types
Using all these assumptions, we find the asymptotic expansion:

$$
\partial_{t} p=-\frac{1}{(\Delta t)^{1-\nu}} \partial_{x}\left(x(1-x)\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) p\right)+\frac{1}{2 N \Delta t} \partial_{x}^{2}(x(1-x) p) .
$$

Depending on the choice of μ and ν, we have the diffusion equation

$$
\partial_{t} p=\frac{1}{2} \partial_{x}^{2}(x(1-x) p) ;
$$

the (partial differential version of the) replicator equation:

$$
\partial_{t} p=-\partial_{x}\left(x(1-x)\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) p\right) ;
$$

or the replicator-diffusion equation

$$
\partial_{t} p=\frac{\varepsilon}{2} \partial_{x}^{2}(x(1-x) p)-\partial_{x}\left(x(1-x)\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) p\right)
$$

Continuous models

Formal asymptotic: Wright-Fisher process for two types
The invariants become the following conservation laws:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{1} p(x, t) \mathrm{d} x=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{0}^{1} \phi(x) p(x, t) \mathrm{d} x=0
$$

where ϕ satisfies

$$
\frac{\varepsilon}{2} \phi^{\prime \prime}+\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) \phi^{\prime}=0, \quad \phi(0)=0, \quad \phi(1)=1
$$

Continuous models

Formal asymptotic: Wright-Fisher process for two types
The invariants become the following conservation laws:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{1} p(x, t) \mathrm{d} x=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{0}^{1} \phi(x) p(x, t) \mathrm{d} x=0
$$

where ϕ satisfies

$$
\frac{\varepsilon}{2} \phi^{\prime \prime}+\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) \phi^{\prime}=0, \quad \phi(0)=0, \quad \phi(1)=1
$$

This implies:

$$
\phi(x)=\frac{\int_{0}^{x} \exp \left[-\frac{2}{\varepsilon} \int_{0}^{x^{\prime}}\left(\psi^{(\mathbb{A})}\left(x^{\prime \prime}\right)-\psi^{(\mathbb{B})}\left(x^{\prime \prime}\right)\right) \mathrm{d} x^{\prime \prime}\right] \mathrm{d} x^{\prime}}{\int_{0}^{1} \exp \left[-\frac{2}{\varepsilon} \int_{0}^{x^{\prime}}\left(\psi^{(\mathbb{A})}\left(x^{\prime \prime}\right)-\psi^{(\mathbb{B})}\left(x^{\prime \prime}\right)\right) \mathrm{d} x^{\prime \prime}\right] \mathrm{d} x^{\prime}} .
$$

Continuous models

Formal asymptotic: Wright-Fisher process for two types
The invariants become the following conservation laws:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{1} p(x, t) \mathrm{d} x=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{0}^{1} \phi(x) p(x, t) \mathrm{d} x=0
$$

where ϕ satisfies

$$
\frac{\varepsilon}{2} \phi^{\prime \prime}+\left(\psi^{(\mathbb{A})}(x)-\psi^{(\mathbb{B})}(x)\right) \phi^{\prime}=0, \quad \phi(0)=0, \quad \phi(1)=1
$$

This implies:

$$
\phi(x)=\frac{\int_{0}^{x} \exp \left[-\frac{2}{\varepsilon} \int_{0}^{x^{\prime}}\left(\psi^{(\mathbb{A})}\left(x^{\prime \prime}\right)-\psi^{(\mathbb{B})}\left(x^{\prime \prime}\right)\right) \mathrm{d} x^{\prime \prime}\right] \mathrm{d} x^{\prime}}{\int_{0}^{1} \exp \left[-\frac{2}{\varepsilon} \int_{0}^{x^{\prime}}\left(\psi^{(\mathbb{A})}\left(x^{\prime \prime}\right)-\psi^{(\mathbb{B})}\left(x^{\prime \prime}\right)\right) \mathrm{d} x^{\prime \prime}\right] \mathrm{d} x^{\prime}} .
$$

If we start from the initial condition $p^{I}=\delta_{x_{0}}$, then the fixation probability is $\phi\left(x_{0}\right)$.

Comparisons

The Kimura equation

The equation

$$
\partial_{t} f=\frac{\varepsilon}{2} x(1-x) \partial_{x}^{2} f+\gamma x(1-x) \partial_{x} f,
$$

with boundary condition given by $f(0, t)=0$ and $f(1, t)=1$ is known as the Kimura equation.

Comparisons

The Kimura equation

The equation

$$
\partial_{t} f=\frac{\varepsilon}{2} x(1-x) \partial_{x}^{2} f+\gamma x(1-x) \partial_{x} f,
$$

with boundary condition given by $f(0, t)=0$ and $f(1, t)=1$ is known as the Kimura equation.
$f(x, t)$ is the fixation probability at time t (or before) associated to the type 1 , when its initial presence is x.

Comparisons

The Kimura equation

The equation

$$
\partial_{t} f=\frac{\varepsilon}{2} x(1-x) \partial_{x}^{2} f+\gamma x(1-x) \partial_{x} f,
$$

with boundary condition given by $f(0, t)=0$ and $f(1, t)=1$ is known as the Kimura equation.
$f(x, t)$ is the fixation probability at time t (or before) associated to the type 1 , when its initial presence is x.
The adjoint of the replicator-diffusion equation generalizes the Kimura equation for more general fitnesses.

Comparisons

The Kimura equation

The equation

$$
\partial_{t} f=\frac{\varepsilon}{2} x(1-x) \partial_{x}^{2} f+\gamma x(1-x) \partial_{x} f,
$$

with boundary condition given by $f(0, t)=0$ and $f(1, t)=1$ is known as the Kimura equation.
$f(x, t)$ is the fixation probability at time t (or before) associated to the type 1 , when its initial presence is x.

The adjoint of the replicator-diffusion equation generalizes the Kimura equation for more general fitnesses.
The final state is the final fixation probability: $\lim _{t \rightarrow \infty} f(x, t)=\phi(x)$.

Comparisons

Fixation probability for homogeneous populations

Fixation probability for $N=20$ and pay-off matrix $\left(\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right)$. The red line indicates the function $\phi(x)$ for $\varepsilon=0.1125157473$.

Comparisons

Fixation probability for homogeneous populations

Fixation probability for $N=50$ and pay-off matrix $\left(\begin{array}{ll}9 & 4 \\ 2 & 2\end{array}\right)$. The red line indicates the function $\phi(x)$ for $\varepsilon=0.04315862961$.

Time evolution in the Wright-Fisher process

Number of individuals of the first type, for the Wright-Fisher process with pay-off matrix given by
$\left(\begin{array}{cc}10 & 5 \\ 5 & 15\end{array}\right)$, for ten
simulations with initial conditions of 220/300 individuals of the first type. The red line indicates the evolution of the mean.

Continuous models

Rigorous asymptotic: the replicator-diffusion equation for two types
Let $\mathcal{B M}^{+}([0,1])$ denote the positive Radon measures in $[0,1]$.

Theorem

For a given $p^{\mathrm{I}} \in \mathcal{B M}^{+}([0,1])$, there exists a unique (weak) solution p, with $p \in L^{\infty}\left([0, \infty) ; \mathcal{B M}^{+}([0,1])\right)$ and such that p satisfies the conservations laws.
The solution can be written as $p(x, t)=r(x, t)+a(t) \delta_{0}+b(t) \delta_{1}$, where $r \in C^{\infty}\left(\mathbb{R}^{+} ; C^{\infty}([0,1])\right)$ is a classical (regular) solution to the replicator diffusion equation without boundary conditions, and δ_{y} denotes the singular measure supported at y. We also have that $a(t)$ and $b(t)$, belong to $C([0, \infty)) \cap C^{\infty}\left(\mathbb{R}^{+}\right)$. For large time, we have that $\lim _{t \rightarrow \infty} r(x, t)=0$, uniformly, and that $a(t)$ and $b(t)$, the transient extinction and fixation probabilities, respectively, are monotonically increasing functions. Moreover, we have that

$$
\lim _{t \rightarrow \infty} p(\cdot, t)=\pi_{0}\left[p^{\mathrm{I}}\right] \delta_{0}+\pi_{1}\left[p^{\mathrm{I}}\right] \delta_{1}
$$

with respect to the Radon metric. Finally, the convergence rate is exponential.

Continuous models

Rigorous asymptotic: the replicator-diffusion equation for two types

Theorem

Let $p(x, t, N, \Delta t)$ be the solution of the finite population dynamics (of population N, time step $\Delta t=1 / N$), with initial conditions given by $p^{0}(x, N, \Delta t)=p^{0}(x), x=0,1 / N, 2 / N, \cdots, 1$, for p^{0} as in the previous theorem. Assume also the weak-selection limit, with $\nu=\frac{1}{2}$. Let $p_{\text {cont }}(x, t)$ be the solution of the continuous model, with initial condition given by $p^{0}(x)$. If we write p_{i}^{n} for the i-th component of $p(x, t, N, \Delta t)$ in the n-th iteration, we have, for any $t^{*}>0$, that

$$
\lim _{N \rightarrow \infty} p_{x N}^{t N^{2}}=p_{\text {cont }}(x, t), \quad x \in[0,1], \quad t \in\left[0, t^{*}\right]
$$

The Wright-Fisher process

From the discrete to the continuous
We look for a simpler model for intermediate populations.

The Wright-Fisher process

From the discrete to the continuous
We look for a simpler model for intermediate populations.
This means that we look for a differential equation for the fraction of type i individuals. This equation should present two time-scales associated to two different phenomena:

The Wright-Fisher process

From the discrete to the continuous
We look for a simpler model for intermediate populations.
This means that we look for a differential equation for the fraction of type i individuals. This equation should present two time-scales associated to two different phenomena:
(1) The first time scale will represent the natural selection;

> Replicator Equation

The Wright-Fisher
 process

From the discrete to the continuous
We look for a simpler model for intermediate populations.
This means that we look for a differential equation for the fraction of type i individuals. This equation should present two time-scales associated to two different phenomena:
(1) The first time scale will represent the natural selection;
Replicator Equation
(2) The second time scale will represent the genetic drift.

> Diffusion to the vertexes of the simplex (pure states)

process

From the discrete to the continuous

We look for a simpler model for intermediate populations.
This means that we look for a differential equation for the fraction of type i individuals. This equation should present two time-scales associated to two different phenomena:
(1) The first time scale will represent the natural selection;

Replicator Equation

(2) The second time scale will represent the genetic drift.

Diffusion to the vertexes of the simplex (pure states)
Let the n-1-dimensional simplex be

$$
S^{n-1}:=\left\{\mathbf{x} \in \mathbf{R}^{n}| | \mathbf{x} \mid:=\sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0, \forall i=1, \cdots, n\right\}
$$

The Wright-Fisher process

From the discrete to the continuous

We consider the discrete evolution $\left(|\mathbf{y}|=\sum_{i} y_{i}\right)$
$p_{N}(\mathbf{x}, t+\Delta t)=\sum_{|y|=1} \Theta_{N}(\mathbf{y} \rightarrow \mathbf{x}) p_{N}(t, \mathbf{y})=\sum_{|\mathbf{y}|=0} \Theta_{N}(\mathbf{x}-\mathbf{y} \rightarrow \mathbf{x}) p_{N}(t, \mathbf{x}-\mathbf{y})$.

The Wright-Fisher process

From the discrete to the continuous

We consider the discrete evolution $\left(|\mathbf{y}|=\sum_{i} y_{i}\right)$
$p_{N}(\mathbf{x}, t+\Delta t)=\sum_{|y|=1} \Theta_{N}(\mathbf{y} \rightarrow \mathbf{x}) p_{N}(t, \mathbf{y})=\sum_{|\mathbf{y}|=0} \Theta_{N}(\mathbf{x}-\mathbf{y} \rightarrow \mathbf{x}) p_{N}(t, \mathbf{x}-\mathbf{y})$.
We assume the weak selection principle $\phi^{(i)}(\mathbf{y})=1+\frac{\psi^{(i)}(\mathbf{y})}{N}$, and then $\bar{\phi}(\mathbf{y})=1+\frac{\bar{\psi}(\mathbf{y})}{N}$.

The Wright-Fisher process

From the discrete to the continuous

We consider the discrete evolution $\left(|\mathbf{y}|=\sum_{i} y_{i}\right)$
$p_{N}(\mathbf{x}, t+\Delta t)=\sum_{|y|=1} \Theta_{N}(\mathbf{y} \rightarrow \mathbf{x}) p_{N}(t, \mathbf{y})=\sum_{|y|=0} \Theta_{N}(\mathbf{x}-\mathbf{y} \rightarrow \mathbf{x}) p_{N}(t, \mathbf{x}-\mathbf{y})$.
We assume the weak selection principle $\phi^{(i)}(\mathbf{y})=1+\frac{\psi^{(i)}(\mathbf{y})}{N}$, and then $\bar{\phi}(\mathbf{y})=1+\frac{\bar{\psi}(\mathbf{y})}{N}$. This implies that

$$
\begin{aligned}
\left(\frac{y_{i} \phi^{(i)}}{\bar{\phi}}\right)^{N x_{i}} & \approx \exp \left\{N x_{i}\left[\log y_{i}+\log \left(1+\frac{\psi^{(i)}(\mathbf{y})}{N}\right)\left(1-\frac{\bar{\psi}(\mathbf{y})}{N}+\frac{\bar{\psi}^{2}(\mathbf{y})}{N^{2}}\right)\right]\right\} \\
& \approx y_{i}^{N x_{i}} \exp \left[x_{i}\left(\psi^{(i)}(\mathbf{y})-\bar{\psi}(\mathbf{y})\right)+\frac{x_{i} \bar{\psi}}{N}\left(\bar{\psi}(\mathbf{y})-\psi^{(i)}(\mathbf{y})\right)\right]
\end{aligned}
$$

The Wright-Fisher process

From the discrete to the continuous

Using the Stirling formula $x!\approx \sqrt{2 \pi x} x^{x} \mathrm{e}^{-x}$ we write

$$
\frac{N!}{\left(N x_{1}\right)!\left(N x_{2}\right)!\cdots\left(N x_{n}\right)!} \approx \frac{(2 \pi)^{\frac{1-n}{2}}}{N^{n-1}} \frac{N^{\frac{n-1}{2}}}{\left(x_{1} x_{2} \cdots x_{n}\right)^{\frac{1}{2}} x_{1}^{x_{1} N} x_{2}^{x_{2} N} \cdots x_{n}^{x_{n} N}} .
$$

The Wright-Fisher process

From the discrete to the continuous

Finally, we have

$$
\Theta_{N}(\mathbf{y} \rightarrow \mathbf{x}) \approx \frac{1}{N^{n-1}} \Lambda\left(\mathbf{y}, \mathbf{x}, N^{-\frac{1}{2}}\right)\left(1+\equiv\left(\mathbf{y}, \mathbf{x}, N^{-\frac{1}{2}}\right)+o\left(N^{-1}\right)\right)
$$

where

$$
\begin{aligned}
& \Lambda(\mathbf{y}, \mathbf{x}, z):=\frac{(2 \pi)^{\frac{1-n}{2}} z^{1-n}}{\left(x_{1} x_{2} \cdots x_{n}\right)^{\frac{1}{2}}} \prod_{i=1}^{n}\left(\frac{y_{i}}{x_{i}}\right)^{\frac{x_{i}}{z^{2}}} \\
& \equiv(\mathbf{y}, \mathbf{x}, z):=\sum_{i=1}^{n}\left[x_{i}\left(\psi^{(i)}(\mathbf{y})-\bar{\psi}(\mathbf{y})\right)+z^{2} x_{i} \bar{\psi}(\mathbf{y})\left(\bar{\psi}(\mathbf{y})-\psi^{(i)}(\mathbf{y})\right)\right] .
\end{aligned}
$$

Note that \equiv is associated to the drift generated by the fitness; i.e., if $\psi^{(i)}(\mathbf{y})$ is constant, then $\Xi(\mathbf{y}, \mathbf{x}, N)=0$.

The Wright-Fisher

From the discrete to the continuous
We introduce the new variables $\tau_{i}=y_{i} \sqrt{N}$ and $z=\frac{1}{\sqrt{N}}$.

Lemma

For large N (and then small z) the neutral transition probability Λ scales as

$$
\Lambda(\mathbf{x}-z \tau, \mathbf{x}, z) \approx \frac{(2 \pi)^{\frac{1-n}{2}} z^{1-n}}{\left(x_{1} x_{2} \cdots x_{n}\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{2} \mathcal{Q}(\tau, \tau)\right)
$$

where \mathcal{Q} is a quadratic form with associated eigenvalues $\lambda_{1}, \cdots, \lambda_{n-1}$.
These eigenvalues are the eigenvalues of the matrix $\mathbf{F}=\left(F_{i j}\right)$, $i, j=1, \cdots, n-1$, such that $F_{i i}=x_{i}^{-1}+x_{n}^{-1}$ and $F_{i j}=x_{n}^{-1}$, for $i \neq j$, i.e., $\lambda_{1} \cdots \lambda_{n-1}=\left(x_{1} \cdots x_{n}\right)^{-1}$. This implies that

$$
\int_{\mathbb{R}^{n-1}} \exp \left(-\frac{1}{2} \mathcal{Q}(\boldsymbol{\tau}, \boldsymbol{\tau})\right) \mathrm{d} \boldsymbol{\tau}=(2 \pi)^{\frac{n-1}{2}} \sqrt{x_{1} \cdots x_{n}}
$$

The Wright-Fisher process

From the discrete to the continuous

Lemma

For large N (and then small z) the neutral transition probability Λ has the following first moments:

$$
\begin{aligned}
& z^{n-1} \int \Lambda(\mathbf{x}, \mathbf{x}+z \boldsymbol{\tau}, z) \mathrm{d} \boldsymbol{\tau}=\int \Lambda(\mathbf{x}, \mathbf{x}+\mathbf{y}, z) \mathrm{d} \mathbf{y}=1, \\
& z^{n} \int \tau_{i} \Lambda(\mathrm{x}, \mathbf{x}+z \boldsymbol{\tau}, z) \mathrm{d} \boldsymbol{\tau}=0, \\
& z^{n+1} \int \tau_{i} \tau_{j} \Lambda(\mathrm{x}, \mathbf{x}+z \boldsymbol{\tau}, z) \mathrm{d} \boldsymbol{\tau}=\mathrm{o}\left(z^{3}\right)+z^{2} \times \begin{cases}\left(-x_{i} x_{j}\right) & \text { if } i \neq j, i, j \leq n-1, \\
x_{i}\left(1-x_{i}\right) & \text { if } i=j \leq n-1 .\end{cases}
\end{aligned}
$$

The Wright-Fisher process

From the discrete to the continuous
We write the following equation for an appropriate test function g :

$$
\begin{aligned}
& \int p(\mathbf{x}, t+\Delta t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \approx \iint \Theta_{N}(\mathbf{x}-\mathbf{y} \rightarrow \mathbf{x}) p(\mathbf{x}-\mathbf{y}, t) N^{n-1} g(\mathbf{x}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y} \\
& \quad \approx \frac{1}{z^{n-1}} \iint \Theta_{\frac{1}{z^{2}}}(\mathbf{x}-z \boldsymbol{\tau} \rightarrow \mathbf{x}) p(\mathbf{x}-z \boldsymbol{\tau}, t) g(\mathbf{x}) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x}
\end{aligned}
$$

The Wright-Fisher process

From the discrete to the continuous
We write the following equation for an appropriate test function g :

$$
\begin{aligned}
& \int p(\mathbf{x}, t+\Delta t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \approx \iint \Theta_{N}(\mathbf{x}-\mathbf{y} \rightarrow \mathbf{x}) p(\mathbf{x}-\mathbf{y}, t) N^{n-1} g(\mathbf{x}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y} \\
& \quad \approx \frac{1}{z^{n-1}} \iint \Theta_{\frac{1}{z^{2}}}(\mathbf{x}-z \boldsymbol{\tau} \rightarrow \mathbf{x}) p(\mathbf{x}-z \boldsymbol{\tau}, t) g(\mathbf{x}) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x} \\
& \approx z^{n-1} \iint[1+\equiv(\mathbf{x}-z \boldsymbol{\tau}, \mathbf{x}, z)] \wedge(\mathbf{x}-z \boldsymbol{\tau}, \mathbf{x}, z) p(\mathbf{x}-z \boldsymbol{\tau}, t) g(\mathbf{x}) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x}
\end{aligned}
$$

The Wright-Fisher process

From the discrete to the continuous
We write the following equation for an appropriate test function g :

$$
\begin{aligned}
& \int p(\mathbf{x}, t+\Delta t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \approx \iint \Theta_{N}(\mathbf{x}-\mathbf{y} \rightarrow \mathbf{x}) p(\mathbf{x}-\mathbf{y}, t) N^{n-1} g(\mathbf{x}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y} \\
& \quad \approx \frac{1}{z^{n-1}} \iint \Theta_{\frac{1}{z^{2}}}(\mathbf{x}-z \boldsymbol{\tau} \rightarrow \mathbf{x}) p(\mathbf{x}-z \tau, t) g(\mathbf{x}) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x} \\
& \approx z^{n-1} \iint[1+\equiv(\mathbf{x}-z \tau, \mathbf{x}, z)] \Lambda(\mathbf{x}-z \tau, \mathbf{x}, z) p(\mathbf{x}-z \tau, t) g(\mathbf{x}) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x} \\
& =z^{n-1} \iint[1+\equiv(\mathbf{x}, \mathbf{x}+z \tau, z)] \Lambda(\mathbf{x}, \mathbf{x}+z \tau, z) p(\mathbf{x}, t) g(\mathbf{x}+z \tau) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x}
\end{aligned}
$$

The Wright-Fisher

process

From the discrete to the continuous

We write the following equation for an appropriate test function g :

$$
\begin{aligned}
\int & p(\mathbf{x}, t+\Delta t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \approx \iint \Theta_{N}(\mathbf{x}-\mathbf{y} \rightarrow \mathbf{x}) p(\mathbf{x}-\mathbf{y}, t) N^{n-1} g(\mathbf{x}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y} \\
& \approx \frac{1}{z^{n-1}} \iint \Theta_{\frac{1}{z^{2}}}(\mathbf{x}-z \boldsymbol{\tau} \rightarrow \mathbf{x}) p(\mathbf{x}-z \tau, t) g(\mathbf{x}) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x} \\
& \approx z^{n-1} \iint[1+\equiv(\mathbf{x}-z \boldsymbol{\tau}, \mathbf{x}, z)] \Lambda(\mathbf{x}-z \tau, \mathbf{x}, z) p(\mathbf{x}-z \tau, t) g(\mathbf{x}) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x} \\
= & z^{n-1} \iint[1+\equiv(\mathbf{x}, \mathbf{x}+z \tau, z)] \Lambda(\mathbf{x}, \mathbf{x}+z \tau, z) p(\mathbf{x}, t) g(\mathbf{x}+z \boldsymbol{\tau}) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x} \\
& \approx z^{n-1} \iint\left[1+z \sum_{i=1}^{n} \tau_{i}\left(\psi^{(i)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right)+\mathrm{o}\left(z^{3}\right)\right] \Lambda(\mathbf{x}, \mathbf{x}+z \tau, z) p(\mathbf{x}, t) \\
& \times\left[g(\mathbf{x}, t)+z \sum_{j=1}^{n-1} \tau_{j} \partial_{x_{j}} g(\mathbf{x})+\frac{z^{2}}{2} \sum_{k, l=1}^{n-1} \tau_{k} \tau_{l} \partial_{x_{k} x_{k}}^{2} g(\mathbf{x})\right] \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x}
\end{aligned}
$$

The Wright-Fisher process

From the discrete to the continuous

$$
\begin{aligned}
& \int p(\mathbf{x}, t+\Delta t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& \approx \\
& \approx z^{n-\mathbf{1}} \iint \Lambda(\mathbf{x}, \mathbf{x}+z \tau, z) p(\mathbf{x}, t) g(\mathbf{x}) \mathrm{d} \tau \mathrm{~d} \mathbf{x} \\
& \quad+z^{n} \iint p(\mathbf{x}, t)\left[\sum_{i=1}^{n}\left(\psi^{(i)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) \tau_{i}+\sum_{j=1}^{n-1} \tau_{j} \partial_{x_{j}} g(\mathbf{x})\right] \Lambda(\mathbf{x}, \mathbf{x}+z \tau, z) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x} \\
& \quad+z^{n+1} \iint p(\mathbf{x}, t)\left[\sum_{k, I=1}^{n-1} \frac{\tau_{k} \tau_{I}}{2} \partial_{x_{k} \times l}^{2} g(\mathbf{x})+\sum_{i=1}^{n} \sum_{j=1}^{n-1} \partial_{x_{j}} g(\mathbf{x})\left(\psi^{(i)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) \tau_{i} \tau_{j}\right]
\end{aligned}
$$

$$
\times \Lambda(\mathbf{x}, \mathbf{x}+z \tau, z) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x}
$$

The Wright-Fisher process

From the discrete to the continuous

$$
\begin{aligned}
& \int p(\mathbf{x}, t+\Delta t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& \approx \int p(\mathbf{x}, t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& \quad+z^{n} \iint p(\mathbf{x}, t)\left[\sum_{i=1}^{n}\left(\psi^{(i)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) \tau_{i}+\sum_{j=1}^{n-1} \tau_{j} \partial_{x_{j}} g(\mathbf{x})\right] \wedge(\mathbf{x}, \mathbf{x}+z \tau, z) \mathrm{d} \tau \mathrm{~d} \mathbf{x} \\
& \quad+z^{n+1} \iint p(\mathbf{x}, t)\left[\sum_{k, l=1}^{n-1} \frac{\tau_{k} \tau_{l}}{2} \partial_{x_{k} x_{l}}^{2} g(\mathbf{x})+\sum_{i=1}^{n} \sum_{j=1}^{n-1} \partial_{x_{j}} g(\mathbf{x})\left(\psi^{(i)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) \tau_{i} \tau_{j}\right]
\end{aligned}
$$

$$
\times \Lambda(\mathbf{x}, \mathbf{x}+z \tau, z) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x}
$$

The Wright-Fisher process

From the discrete to the continuous

$$
\begin{aligned}
& \int p(\mathbf{x}, t+\Delta t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& \approx \int p(\mathbf{x}, t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& \quad+0
\end{aligned}
$$

$$
+z^{n+1} \iint p(\mathbf{x}, t)\left[\sum_{k, I=1}^{n-1} \frac{\tau_{k} \tau_{I}}{2} \partial_{x_{k} \times l}^{2} g(\mathbf{x})+\sum_{i=1}^{n} \sum_{j=1}^{n-1} \partial_{x_{j}} g(\mathbf{x})\left(\psi^{(i)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) \tau_{i} \tau_{j}\right]
$$

$$
\times \Lambda(\mathbf{x}, \mathbf{x}+z \tau, z) \mathrm{d} \boldsymbol{\tau} \mathrm{~d} \mathbf{x}
$$

The Wright-Fisher process

From the discrete to the continuous

$$
\begin{aligned}
& \int p(\mathbf{x}, t+\Delta t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& \approx \int p(\mathbf{x}, t) g(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& \quad+0 \\
& \quad+z^{2} \int g(\mathbf{x})\left[\frac{1}{2} \sum_{k=1}^{n-1} \partial_{x_{k}}^{2}\left(x_{k}\left(1-x_{k}\right) p(\mathbf{x}, t)\right)-\frac{1}{2} \sum_{k, l=1, k \neq l}^{n-1} \partial_{x_{k} x_{l}}^{2}\left(x_{k} x_{l} p(\mathbf{x}, t)\right)\right. \\
& \left.\quad \quad-\sum_{j=1}^{n-1} \partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) p(\mathbf{x}, t)\right)\right] \mathrm{d} \mathbf{x} .
\end{aligned}
$$

The Wright-Fisher process

From the discrete to the continuous

Imposing $\Delta t=z^{2}=\frac{1}{N}$, we have

$$
\begin{aligned}
\partial_{t} p= & \frac{1}{2} \sum_{k=1}^{n-1} \partial_{x_{k}}^{2}\left(x_{k}\left(1-x_{k}\right) p(\mathbf{x}, t)\right)-\frac{1}{2} \sum_{k, l=1, k \neq l}^{n-1} \partial_{x_{k} x_{l}}^{2}\left(x_{k} x_{l} p(\mathbf{x}, t)\right) \\
& -\sum_{j=1}^{n-1} \partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) p(\mathbf{x}, t)\right)
\end{aligned}
$$

We call this equation the replicator-diffusion equation:

$$
\partial_{t} p=\frac{1}{2} \sum_{i, j=1}^{n-1} \partial_{x_{i} x_{j}}^{2}\left(D_{i j} p\right)-\sum_{i=1}^{n-1} \partial_{x_{i}}\left(\Omega_{i} p\right)
$$

Short-term dynamics

The replicator equation appears...
The replicator-diffusion equation is given by

$$
\begin{aligned}
& \partial_{t} p=\frac{1}{2} \sum_{k=1}^{n-1} \partial_{x_{k}}^{2}\left(x_{k}\left(1-x_{k}\right) p(\mathbf{x}, t)\right) \\
& -\frac{1}{2} \sum_{k, I=1, k \neq I}^{n-1} \partial_{x_{k} x_{l}}^{2}\left(x_{k} x_{I} p(\mathbf{x}, t)\right)-\sum_{j=1}^{n-1} \partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) p(\mathbf{x}, t)\right)
\end{aligned}
$$

Short-term dynamics

The replicator equation appears...
The replicator-diffusion equation is given by

$$
\begin{aligned}
& \frac{1}{\varepsilon} \partial_{t} p=\frac{1}{2} \sum_{k=1}^{n-1} \partial_{x_{k}}^{2}\left(x_{k}\left(1-x_{k}\right) p(\mathbf{x}, t)\right) \\
& \quad-\frac{1}{2} \sum_{k, l=1, k \neq l}^{n-1} \partial_{x_{k} x_{l}}^{2}\left(x_{k} x_{l} p(\mathbf{x}, t)\right)-\frac{1}{\varepsilon} \sum_{j=1}^{n-1} \partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) p(\mathbf{x}, t)\right)
\end{aligned}
$$

If we consider strong selection $\left(\psi \rightarrow \frac{\psi}{\varepsilon}\right)$ and short times $(t \rightarrow \varepsilon t)$ for a very $\operatorname{small} \varepsilon$ we find

Short-term dynamics

The replicator equation appears...
The replicator-diffusion equation is given by

$$
\begin{aligned}
& \frac{1}{\varepsilon} \partial_{t} p=\frac{1}{2} \sum_{k=1}^{n-1} \partial_{x_{k}}^{2}\left(x_{k}\left(1-x_{k}\right) p(\mathbf{x}, t)\right) \\
& \quad-\frac{1}{2} \sum_{k, l=1, k \neq l}^{n-1} \partial_{x_{k} x_{l}}^{2}\left(x_{k} x_{l} p(\mathbf{x}, t)\right)-\frac{1}{\varepsilon} \sum_{j=1}^{n-1} \partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) p(\mathbf{x}, t)\right)
\end{aligned}
$$

If we consider strong selection $\left(\psi \rightarrow \frac{\psi}{\varepsilon}\right)$ and short times $(t \rightarrow \varepsilon t)$ for a very small ε we find for $\varepsilon \rightarrow 0$

$$
\partial_{t} p=-\sum_{j=1}^{n-1} \partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) p(\mathbf{x}, t)\right)
$$

Short-term dynamics

The replicator equation appears...
The replicator-diffusion equation is given by

$$
\begin{aligned}
& \frac{1}{\varepsilon} \partial_{t} p=\frac{1}{2} \sum_{k=1}^{n-1} \partial_{x_{k}}^{2}\left(x_{k}\left(1-x_{k}\right) p(\mathbf{x}, t)\right) \\
& \quad-\frac{1}{2} \sum_{k, l=1, k \neq l}^{n-1} \partial_{x_{k} x_{l}}^{2}\left(x_{k} x_{l} p(\mathbf{x}, t)\right)-\frac{1}{\varepsilon} \sum_{j=1}^{n-1} \partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) p(\mathbf{x}, t)\right)
\end{aligned}
$$

If we consider strong selection $\left(\psi \rightarrow \frac{\psi}{\varepsilon}\right)$ and short times $(t \rightarrow \varepsilon t)$ for a very small ε we find for $\varepsilon \rightarrow 0$

$$
\partial_{t} p=-\sum_{j=1}^{n-1} \partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) p(\mathbf{x}, t)\right)
$$

This equation is equivalent to the replicator dynamics.

Long-term dynamics

Mixed states fade away...

Theorem

Let p be the solution of replicator-diffusion equation. Then, $p^{\infty}:=\lim _{t \rightarrow \infty} p(\cdot, t)$, is a linear combination of Dirac-deltas supported at the vertexes of the simplex.

Long-term dynamics

Mixed states fade away...

Theorem

Let p be the solution of replicator-diffusion equation. Then, $p^{\infty}:=\lim _{t \rightarrow \infty} p(\cdot, t)$, is a linear combination of Dirac-deltas supported at the vertexes of the simplex.

We change variables and re-write the replicator-diffusion equation as

$$
\partial_{t} u=\frac{1}{\omega} \nabla \cdot\left[\omega\left(\frac{1}{2} D \nabla u-\mathbf{B} u\right)\right],
$$

where $u=\mathrm{e}^{-\theta} p / \lambda, \omega=\mathrm{e}^{\theta} / \lambda$, with $\lambda=x_{1} x_{2} \cdots x_{n}$ and $\nabla \theta$ and \mathbf{B} are associated to the Hodges decomposition of the drift part.

Long-term dynamics

Mixed states fade away...

Theorem

Let p be the solution of replicator-diffusion equation. Then, $p^{\infty}:=\lim _{t \rightarrow \infty} p(\cdot, t)$, is a linear combination of Dirac-deltas supported at the vertexes of the simplex.

We change variables and re-write the replicator-diffusion equation as

$$
\partial_{t} u=\frac{1}{\omega} \nabla \cdot\left[\omega\left(\frac{1}{2} D \nabla u-\mathbf{B} u\right)\right],
$$

where $u=\mathrm{e}^{-\theta} p / \lambda, \omega=\mathrm{e}^{\theta} / \lambda$, with $\lambda=x_{1} x_{2} \cdots x_{n}$ and $\nabla \theta$ and \mathbf{B} are associated to the Hodges decomposition of the drift part. This operator is negative-definite and there exists $\alpha>0$, such that

$$
\frac{1}{2} \partial_{t} \int u^{2} \omega \mathrm{~d} V=\int_{S^{n}} \nabla \cdot\left[\omega\left(\frac{1}{2} D \nabla u-\mathcal{B} u\right)\right] u \mathrm{~d} V<-\alpha \int_{S^{n}} u^{2} \omega \mathrm{~d} V .
$$

Long-term dynamics

Mixed states fade away...

Then

$$
\int p^{2} \mathrm{e}^{-\theta} \lambda \mathrm{d} x=\int u^{2} \omega \mathrm{~d} x \xrightarrow{t \rightarrow \infty} 0
$$

and, together with the conservation laws $\partial_{t} \int \phi_{i} p \mathrm{~d} x=0, i=1, \ldots, n$ we have that p concentrates on the zeros of λ, i.e., the boundary of the simplex.

Long-term dynamics

Mixed states fade away...

Then

$$
\int p^{2} \mathrm{e}^{-\theta} \lambda \mathrm{d} x=\int u^{2} \omega \mathrm{~d} x \xrightarrow{t \rightarrow \infty} 0
$$

and, together with the conservation laws $\partial_{t} \int \phi_{i} p d x=0, i=1, \ldots, n$ we have that p concentrates on the zeros of λ, i.e., the boundary of the simplex. This is interpreted as the extinction of one type. We iterate this reasoning $n-1$ times and conclude that all but one type will be extinct, i.e., p concentrates on the vertexes of the simplex.

Long-term dynamics

Mixed states fade away...

Then

$$
\int p^{2} \mathrm{e}^{-\theta} \lambda \mathrm{d} x=\int u^{2} \omega \mathrm{~d} x \xrightarrow{t \rightarrow \infty} 0
$$

and, together with the conservation laws $\partial_{t} \int \phi_{i} p \mathrm{~d} x=0, i=1, \ldots, n$ we have that p concentrates on the zeros of λ, i.e., the boundary of the simplex. This is interpreted as the extinction of one type. We iterate this reasoning $n-1$ times and conclude that all but one type will be extinct, i.e., p concentrates on the vertexes of the simplex. Thus, we postulate that the final state is given by

$$
p^{\infty}=\sum_{v \in V} c_{v} \delta_{v},
$$

where V is the set of all vertexes of the simplex S^{n}.

Short-term dynamics

The replicator equation appears...

Theorem

Let p_{0} be the solution of the replicator-diffusion equation, with $\varepsilon=0$ and let p_{ε} be a solution to replicator-diffusion equation, with $\varepsilon>0$. Then, there exits a C such that, for $\tau \leq C$, we have

$$
\left\|p_{\varepsilon}(\cdot, \tau)-p_{0}(\cdot, \tau)\right\|_{\infty} \leq C \varepsilon
$$

Thus p_{0} is the leading order asymptotic approximation to p_{ε}, for $t<\varepsilon C$.

Short-term dynamics

The replicator equation appears...

Theorem

Let p_{0} be the solution of the replicator-diffusion equation, with $\varepsilon=0$ and let p_{ε} be a solution to replicator-diffusion equation, with $\varepsilon>0$. Then, there exits a C such that, for $\tau \leq C$, we have

$$
\left\|p_{\varepsilon}(\cdot, \tau)-p_{0}(\cdot, \tau)\right\|_{\infty} \leq C \varepsilon
$$

Thus p_{0} is the leading order asymptotic approximation to p_{ε}, for $t<\varepsilon C$.
Define $w_{\varepsilon}=p_{\varepsilon}-p_{0}$, and

$$
\partial_{t} w_{\varepsilon}=\frac{\varepsilon}{2} \sum_{i, j=1}^{n-1} \partial_{i j}\left(D_{i j} w_{\varepsilon}\right)-\sum_{i=1}^{n-1} \partial_{x_{i}}\left(\Omega_{i} w_{\varepsilon}\right)+\frac{\varepsilon}{2} \sum_{i, j=1}^{n-1} \partial_{x_{i} x_{j}}\left(D_{i j} p_{0}\right),\left.\quad w_{\varepsilon}\right|_{t=0}=0
$$

Generalizing Kimura Equation

General fitness function and n types

The dual of the replicator-diffusion equation generalizes the Kimura equation for n types and general fitness:

$$
\partial_{t} f=\frac{\varepsilon}{2} \sum_{k=1}^{n-1} x_{k}\left(1-x_{k}\right) \partial_{k}^{2} f-\frac{1}{2} \sum_{k, l=1 ; k \neq l}^{n-1} x_{k} x_{l} \partial_{k l}^{2} f+\sum_{j=1}^{n-1} x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) \partial_{j} f
$$

Generalizing Kimura Equation

General fitness function and n types

The dual of the replicator-diffusion equation generalizes the Kimura equation for n types and general fitness:

$$
\partial_{t} f=\frac{\varepsilon}{2} \sum_{k=1}^{n-1} x_{k}\left(1-x_{k}\right) \partial_{k}^{2} f-\frac{1}{2} \sum_{k, l=1 ; k \neq l}^{n-1} x_{k} x_{l} \partial_{k l}^{2} f+\sum_{j=1}^{n-1} x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right) \partial_{j} f
$$

The function f gives the fixation probability of a given type. The precise type will be fixed by the boundary conditions imposed to f.

Generalizing Kimura Equation

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.

Generalizing Kimura Equation

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.
Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:

Generalizing

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.
Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:
(1) $f=0$ on the face opposed to the vertex representing type 3 ;

Generalizing Kimura Equation

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.
Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:
(1) $f=0$ on the face opposed to the vertex representing type 3 ;
(2) On the faces 1-3 and 2-3 f is the solution of the generalized Kimura equation with boundary conditions given by

Generalizing Kimura Equation

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.
Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:
(1) $f=0$ on the face opposed to the vertex representing type 3 ;
(2) On the faces 1-3 and 2-3 f is the solution of the generalized Kimura equation with boundary conditions given by
(1) $\left.f\right|_{3}=1$;

Generalizing Kimura Equation

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.
Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:
(1) $f=0$ on the face opposed to the vertex representing type 3 ;
(2) On the faces 1-3 and 2-3 f is the solution of the generalized Kimura equation with boundary conditions given by
(1) $\left.f\right|_{3}=1$;
(2) $\left.f\right|_{1,2}=0$.

Generalizing Kimura Equation

General fitness function and n types
Fixation probability of a Paper in the Rock-Scissor-Paper game.

Conclusions

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that

Conclusions

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
- it is defined in the simplex;

Conclusions

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
- it is defined in the simplex;
- it does not need boundary conditions;

Conclusions

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
- it is defined in the simplex;
- it does not need boundary conditions;
- the conservation laws from the discrete dynamics guarantee the uniqueness of solution;

Conclusions

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
- it is defined in the simplex;
- it does not need boundary conditions;
- the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
- the initial dynamics is given by the replicator dynamics;

Conclusions

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
- it is defined in the simplex;
- it does not need boundary conditions;
- the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
- the initial dynamics is given by the replicator dynamics;
- the final state is a superposition of Dirac deltas at the vertexes of the simplex;

onclusions

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
- it is defined in the simplex;
- it does not need boundary conditions;
- the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
- the initial dynamics is given by the replicator dynamics;
- the final state is a superposition of Dirac deltas at the vertexes of the simplex;
- these Dirac deltas are generated in finite time (in fact, at $t=0^{+}$!);

onclusions

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
- it is defined in the simplex;
- it does not need boundary conditions;
- the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
- the initial dynamics is given by the replicator dynamics;
- the final state is a superposition of Dirac deltas at the vertexes of the simplex;
- these Dirac deltas are generated in finite time (in fact, at $t=0^{+}$!);
- the associated hyperbolic equation (limit of no diffusion) is more regular than the parabolic equation.

onclusions

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
- it is defined in the simplex;
- it does not need boundary conditions;
- the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
- the initial dynamics is given by the replicator dynamics;
- the final state is a superposition of Dirac deltas at the vertexes of the simplex;
- these Dirac deltas are generated in finite time (in fact, at $t=0^{+!}$);
- the associated hyperbolic equation (limit of no diffusion) is more regular than the parabolic equation.

THE END

