Discrete and Continuous Models in Population Dynamics

Fabio A. C. C. Chalub — Universidade Nova de Lisboa

DSABNS 2012 — February 2012

The big question

Do we do the right thing?

If population dynamics is based on individuals, why do people use differential equations?

The big question

The question you never asked your professor...

Where do differential equations come from?

...and side effects

...and side effects

We will not answer the previous questions. \bigodot

But, we will analyze in detail a simple example.

...and side effects

We will not answer the previous questions. \odot

But, we will analyze in detail a simple example. 😊

We start from a simple model in population dynamics and obtain, in the end, an ordinary differential equations.

...and side effects

We will not answer the previous questions. \odot

But, we will analyze in detail a simple example. 😊

We start from a simple model in population dynamics and obtain, in the end, an ordinary differential equations.

As side-effects:

...and side effects

We will not answer the previous questions.

But, we will analyze in detail a simple example. 😊

We start from a simple model in population dynamics and obtain, in the end, an ordinary differential equations.

As side-effects:

We establish the validity of the ODE model;

...and side effects

We will not answer the previous questions.

But, we will analyze in detail a simple example. 😊

We start from a simple model in population dynamics and obtain, in the end, an ordinary differential equations.

As side-effects:

- We establish the validity of the ODE model;
- We find a better differential equation. This lead us naturally to singular partial differential equations.

We consider a population of *N* individuals

We consider a population of *N* individuals of *n* different types.

We consider a population of *N* individuals of *n* different types. We attribute to each type a number, called fitness.

The next generation is obtained from the previous one:

General definitions

We consider N individuals of n different types.

General definitions

We consider N individuals of n different types. For each type we define a fitness Ψ_i .

General definitions

We consider N individuals of n different types.

For each type we define a fitness Ψ_i .

The state of the population is given by a vector in the n-1-dimensional simplex

$$S^{n-1} = \{ \mathbf{x} = (x_1, \dots, x_n) | \sum_{k=1}^n x_k = 1, x_i \ge 0 \}.$$

General definitions

We consider N individuals of n different types.

For each type we define a fitness Ψ_i .

The state of the population is given by a vector in the n-1-dimensional simplex

$$S^{n-1} = \{ \mathbf{x} = (x_1, \dots, x_n) | \sum_{k=1}^n x_k = 1, x_i \ge 0 \}.$$

General definitions

We consider N individuals of n different types.

For each type we define a fitness Ψ_i .

The state of the population is given by a vector in the n-1-dimensional simplex

$$S^{n-1} = \{ \mathbf{x} = (x_1, \dots, x_n) | \sum_{k=1}^n x_k = 1, x_i \ge 0 \}.$$

The next generation is obtained from the previous one: each individual descend from one of the types, with probability proportional to the fitness. The transition probability from a state **y** to a new state **x** is given by

$$\Theta_{N}(\mathbf{y} \to \mathbf{x}) = \frac{N!}{(Nx_{1})!(Nx_{2})!\cdots(Nx_{n})!} \prod_{i=1}^{n} \left(\frac{y_{i}\Psi^{(i)}}{\bar{\Psi}}\right)^{Nx_{i}}.$$

A crash course on game theory

We consider two players, with two possible pure strategies, and associate a pay-off matrix:

$$\begin{array}{c|cccc} & I & II \\ \hline I & A & B \\ II & C & D \end{array}, \quad \text{with } A, B, C, D > 0.$$

A crash course on game theory

We consider two players, with two possible pure strategies, and associate a pay-off matrix:

$$\begin{array}{c|cccc} & I & II \\ \hline I & A & B \\ II & C & D \end{array}, \quad \text{with } A, B, C, D > 0.$$

We call an E_q -strategist, an individual playing pure strategy I with probability q and pure strategy II with probability 1-q.

A crash course on game theory

We consider two players, with two possible pure strategies, and associate a pay-off matrix:

$$\begin{array}{c|cccc} & I & II \\ \hline I & A & B \\ II & C & D \end{array}, \quad \text{with } A, B, C, D > 0.$$

We call an E_q -strategist, an individual playing pure strategy I with probability q and pure strategy II with probability 1-q.

Rationality: Against an E_q -strategist, one chooses the best reply: the strategy E_p , with $p = \mathcal{R}(q)$.

A crash course on game theory

We consider two players, with two possible pure strategies, and associate a pay-off matrix:

$$\begin{array}{c|cccc} & I & II \\ \hline I & A & B \\ II & C & D \end{array}, \quad \text{with } A,B,C,D>0.$$

We call an E_q -strategist, an individual playing pure strategy I with probability q and pure strategy II with probability 1-q.

Rationality: Against an E_q -strategist, one chooses the best reply: the strategy E_p , with $p = \mathcal{R}(q)$.

The Nash equilibrium is given by the strategy that is the best reply against itself: $p^* = \mathcal{R}(p^*)$.

A crash course on game theory

In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".

A crash course on game theory

In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".

We identify the pay-off with the fitness (probability to leave descendants in the next generation).

A crash course on game theory

In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".

We identify the pay-off with the fitness (probability to leave descendants in the next generation).

We define the evolutionary stable strategies (ESS).

A crash course on game theory

In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".

We identify the pay-off with the fitness (probability to leave descendants in the next generation).

We define the evolutionary stable strategies (ESS).

Let $W(E_p, E_q)$, be the average pay-off of an E_p -strategist against a population of E_q -strategists.

A crash course on game theory

In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".

We identify the pay-off with the fitness (probability to leave descendants in the next generation).

We define the evolutionary stable strategies (ESS).

Let $W(E_p, E_q)$, be the average pay-off of an E_p -strategist against a population of E_q -strategists.

We consider a population of E_p -strategists and a small number of invaders to this population playing E_q .

A crash course on game theory

In biology, we do not have the rationality assumption: this should be replaced by a certain kind of "best response dynamics".

We identify the pay-off with the fitness (probability to leave descendants in the next generation).

We define the evolutionary stable strategies (ESS).

Let $W(E_p, E_q)$, be the average pay-off of an E_p -strategist against a population of E_q -strategists.

We consider a population of E_p -strategists and a small number of invaders to this population playing E_q .

We say that E_p is an ESS if and only if:

$$\underbrace{\mathcal{W}(E_q, (1-\varepsilon)E_p + \varepsilon E_q)}_{\text{average invader's pay-off}} < \underbrace{\mathcal{W}(E_p, (1-\varepsilon)E_p + \varepsilon E_q)}_{\text{average resident's pay-off}}$$

for any strategy $E_q \neq E_p$ and ε small enough.

Discrete and Continuous Models

FACC Chalub / UNL

A crash course on game theory

We consider that the individuals play a game with two possible pure strategies, I and II, with associated pay-off matrix given by

$$\begin{array}{c|cccc} & I & II \\ \hline I & A & B \\ II & C & D \end{array}, \qquad A, B, C, D > 0 \ .$$

A crash course on game theory

We consider that the individuals play a game with two possible pure strategies, I and II, with associated pay-off matrix given by

$$\begin{array}{c|cccc} & I & II \\ \hline I & A & B \\ II & C & D \end{array}, \qquad A, B, C, D > 0 \ .$$

We call *n* the number of type I individuals. *Fitnesses* are identified with mean pay-off:

$$\Psi^{(I)}(n,N) = \frac{n-1}{N-1}A + \frac{N-n}{N-1}B,$$

$$\Psi^{(II)}(n,N) = \frac{n}{N-1}C + \frac{N-n-1}{N-1}D.$$

A crash course on game theory

For a continuous population the fraction $x = \frac{n}{N}$ of type I individuals is given by the replicator equation

$$\dot{x} = x \left(\Psi^{(I)} - \bar{\Psi} \right)$$

A crash course on game theory

For a continuous population the fraction $x = \frac{n}{N}$ of type I individuals is given by the replicator equation

$$\dot{x} = x \left(\Psi^{(I)} - \bar{\Psi} \right) = x(1-x)\left(x\underbrace{(A-C)}_{\alpha} + (1-x)\underbrace{(B-D)}_{\beta}\right).$$

A crash course on game theory

For a continuous population the fraction $x = \frac{n}{N}$ of type I individuals is given by the replicator equation

$$\dot{x} = x \left(\Psi^{(I)} - \bar{\Psi} \right) = x(1-x)\left(x\underbrace{(A-C)}_{\alpha} + (1-x)\underbrace{(B-D)}_{\beta}\right).$$

When $\alpha<0$ and $\beta>0$ (the *Hawk-and-Dove* game) this equation has three equilibria: $x=0,\ x=1$ and $x=x^*=\frac{\beta}{\beta-\alpha}\in(0,1)$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x)$. The probability distribution initially concentrates in three points: x=0, x=1 and $x=x^*=\frac{1}{3}$.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen.

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

The replicator dynamics is given by $\dot{x} = x(1-x)(1-3x).$ The probability distribution initially concentrates in three points: x = 0, x = 1 and $x = x^* = \frac{1}{3}$. We accelerate the evolution and nothing seems to happen. After a long time, a diffusion process dominates

Now, we consider n = 3 types and define the Rock-Scissor-Paper game:

Now, we consider n = 3 types and define the Rock-Scissor-Paper game:

Fitnesses are calculated from the matrix:

	Rock	Scissor	Paper
Rock	30	81	29
Scissor	6	30	104
Paper	106	4	30

$$\Psi^{(\mathbb{A})}(x) = 30x + 81y + 29z ,$$

$$\Psi^{(\mathbb{B})}(x) = 6x + 30y + 104z ,$$

$$\Psi^{(\mathbb{C})}(x) = 106x + 4y + 30z .$$

The replicator dynamics is given by:

$$\dot{x} = x(-74x + 4y - 1 + 75x^2 + 96xy + 48y^2) ,$$

$$\dot{y} = y(-173x - 122y + 74 + 75x^2 + 96xy + 48y^2) ,$$

where $x \ge 0$ is the frequency of type 1, $y \ge 0$ of type 2 and $z = 1 - x - y \ge 0$ (i.e., $x + y \le 1$) of type 3.

The replicator dynamics is given by:

$$\dot{x} = x(-74x + 4y - 1 + 75x^2 + 96xy + 48y^2) ,$$

$$\dot{y} = y(-173x - 122y + 74 + 75x^2 + 96xy + 48y^2) ,$$

where $x \ge 0$ is the frequency of type 1, $y \ge 0$ of type 2 and $z = 1 - x - y \ge 0$ (i.e., $x + y \le 1$) of type 3. The only stationary solutions are:

The replicator dynamics is given by:

$$\dot{x} = x(-74x + 4y - 1 + 75x^2 + 96xy + 48y^2) ,$$

$$\dot{y} = y(-173x - 122y + 74 + 75x^2 + 96xy + 48y^2) ,$$

where $x \ge 0$ is the frequency of type 1, $y \ge 0$ of type 2 and $z = 1 - x - y \ge 0$ (i.e., $x + y \le 1$) of type 3.

The only stationary solutions are:

1
$$(x,y) = (0,0)$$
, everybody is of type 3;

The replicator dynamics is given by:

$$\dot{x} = x(-74x + 4y - 1 + 75x^2 + 96xy + 48y^2) ,$$

$$\dot{y} = y(-173x - 122y + 74 + 75x^2 + 96xy + 48y^2) ,$$

where $x \ge 0$ is the frequency of type 1, $y \ge 0$ of type 2 and $z = 1 - x - y \ge 0$ (i.e., $x + y \le 1$) of type 3.

The only stationary solutions are:

- (x,y) = (0,0), everybody is of type 3;
- (x,y) = (0,1), everybody is of type 2;

The replicator dynamics is given by:

$$\begin{split} \dot{x} &= x \big(-74x + 4y - 1 + 75x^2 + 96xy + 48y^2 \big) \;, \\ \dot{y} &= y \big(-173x - 122y + 74 + 75x^2 + 96xy + 48y^2 \big) \;, \end{split}$$

where $x \ge 0$ is the frequency of type 1, $y \ge 0$ of type 2 and $z = 1 - x - y \ge 0$ (i.e., $x + y \le 1$) of type 3.

- The only stationary solutions are:
 - **(**(x,y) = (0,0), everybody is of type 3;
 - (x,y) = (0,1), everybody is of type 2;
 - (x,y) = (1,0), everybody is of type 1;

The replicator dynamics is given by:

$$\dot{x} = x(-74x + 4y - 1 + 75x^2 + 96xy + 48y^2) ,$$

$$\dot{y} = y(-173x - 122y + 74 + 75x^2 + 96xy + 48y^2) ,$$

where $x \ge 0$ is the frequency of type 1, $y \ge 0$ of type 2 and $z = 1 - x - y \ge 0$ (i.e., $x + y \le 1$) of type 3.

The only stationary solutions are:

- (x,y) = (0,0), everybody is of type 3;
- (x,y) = (0,1), everybody is of type 2;
- (x,y) = (1,0), everybody is of type 1;
- $(x,y) = (\frac{1}{3}, \frac{1}{3})$, a mixed population.

The flow of the replicator dynamics is given by:

The flow of the replicator dynamics is given by:

The vertexes of the simplex are unstable stationary points, while the center of the simplex is the only stable stationary point of the replicator dynamics.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N = 150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}.$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}.$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}.$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}.$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}.$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$.

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}.$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}.$

Simulation for N=150 and the pay-off matrix given by $\begin{pmatrix} 30 & 81 & 29 \\ 6 & 30 & 104 \\ 106 & 4 & 30 \end{pmatrix}$

Transition matrix for two types

Let $P(x, t, N, \Delta t)$ be the probability of at time t there are xN, $x = 0, \frac{1}{N}, \ldots, 1$, mutants in a population of fixed size N evolving with time steps of order Δt .

Transition matrix for two types

Let $P(x, t, N, \Delta t)$ be the probability of at time t there are xN, $x = 0, \frac{1}{N}, \ldots, 1$, mutants in a population of fixed size N evolving with time steps of order Δt . The evolution is given by

$$P(x,t,N,\Delta t) = \sum_{y=0,\frac{1}{N},\dots,1} \Theta_N(y \to x) P(y,t,N,\Delta t)$$

Transition matrix for two types

Let $P(x, t, N, \Delta t)$ be the probability of at time t there are xN, $x = 0, \frac{1}{N}, \ldots, 1$, mutants in a population of fixed size N evolving with time steps of order Δt . The evolution is given by

$$P(x,t,N,\Delta t) = \sum_{y=0,\frac{1}{N},\dots,1} \Theta_N(y \to x) P(y,t,N,\Delta t)$$

The evolution equation can be written

$$P(t + \Delta t) = MP(t)$$

where

$$\mathbf{P}(t) := (P(0, t, N, \Delta t), P(1/N, t, N, \Delta t), \cdots, P(1, t, N, \Delta t))$$

and M is a stochastic matrix.

Transition matrix for two types

Let $P(x,t,N,\Delta t)$ be the probability of at time t there are xN, $x=0,\frac{1}{N},\ldots,1$, mutants in a population of fixed size N evolving with time steps of order Δt . The evolution is given by

$$P(x,t,N,\Delta t) = \sum_{y=0,\frac{1}{N},\dots,1} \Theta_N(y \to x) P(y,t,N,\Delta t)$$

The evolution equation can be written

$$P(t + \Delta t) = MP(t)$$

where

$$\mathbf{P}(t) := (P(0, t, N, \Delta t), P(1/N, t, N, \Delta t), \cdots, P(1, t, N, \Delta t))$$

and M is a stochastic matrix.

This implies that $\mathcal{P}(\kappa\Delta t)=\mathsf{M}^{\kappa}\mathcal{P}(0)$.
Discrete and Continuous Models

Spectral theory

Theorem

$$\lim_{\kappa \to \infty} \mathbf{M}^{\kappa} = \begin{pmatrix} 1 & 1 - F_1 & \cdots & 1 - F_N \\ 0 & 0 & \cdots & 0 \\ & & \vdots & \\ 0 & F_1 & \cdots & F_N \end{pmatrix} .$$

where the F_n satisfy $F_n=\sum_{m=0}^N\Theta_N\left(rac{n}{N} orac{m}{N}
ight)F_m$, with $F_0=0$ and $F_N=1$.

In particular, any stationary state will be concentrated at the endpoints. If 1 denotes the vector $(1,1,\ldots,1)^\dagger$, $\mathbf{F}=(F_0,F_1,\ldots,F_N)^\dagger$ and if $\langle\cdot,\cdot,\rangle$ denotes the usual inner product, then we have that $\langle \mathbf{P}(t),\mathbf{1}\rangle=\langle \mathbf{P}(0),\mathbf{1}\rangle$ and $\langle \mathbf{P}(t),\mathbf{F}\rangle=\langle \mathbf{P}(0),\mathbf{F}\rangle$.

General idea: 2 types

We look for a differential equation that approximates the discrete evolution of P when $N \to \infty$ and $\Delta t \to 0$.

General idea: 2 types

We look for a differential equation that approximates the discrete evolution of P when $N \to \infty$ and $\Delta t \to 0$.

We introduce the following assumptions:

General idea: 2 types

We look for a differential equation that approximates the discrete evolution of P when $N \to \infty$ and $\Delta t \to 0$.

We introduce the following assumptions:

The weak selection principle:

$$\lim_{N\to\infty,\Delta t\to 0} \Psi^{(i)}(x) = 1.$$

More precisely, we assume that $\Psi^{(i)}(x) = 1 + (\Delta t)^{\nu} \psi^{(i)}(x)$.

General idea: 2 types

We look for a differential equation that approximates the discrete evolution of P when $N \to \infty$ and $\Delta t \to 0$.

We introduce the following assumptions:

The weak selection principle:

$$\lim_{N\to\infty,\Delta t\to 0} \Psi^{(i)}(x)=1.$$

More precisely, we assume that $\Psi^{(i)}(x) = 1 + (\Delta t)^{\nu} \psi^{(i)}(x)$.

The limit function $p = \lim_{N \to \infty, \Delta t \to 0} \frac{P}{1/N}$ is such that

$$\begin{split} p\left(x\pm\frac{1}{N},t\right) &= p(x,t)\pm\frac{1}{N}\partial_{x}p(x,t) + \frac{1}{2N^{2}}\partial_{x}^{2}p(x,t) + \mathcal{O}(N^{-3}),\\ p\left(x,t+\Delta t\right) &= p(x,t) + (\Delta t)\,\partial_{t}p(x,t) + \mathcal{O}\left((\Delta t)^{2}\right). \end{split}$$

General idea: 2 types

We look for a differential equation that approximates the discrete evolution of P when $N \to \infty$ and $\Delta t \to 0$.

We introduce the following assumptions:

The weak selection principle:

$$\lim_{N\to\infty,\Delta t\to 0} \Psi^{(i)}(x) = 1.$$

More precisely, we assume that $\Psi^{(i)}(x) = 1 + (\Delta t)^{\nu} \psi^{(i)}(x)$.

The limit function $p = \lim_{N \to \infty, \Delta t \to 0} \frac{P}{1/N}$ is such that

$$\begin{split} & p\left(x\pm\frac{1}{N},t\right) = p(x,t)\pm\frac{1}{N}\partial_x p(x,t) + \frac{1}{2N^2}\partial_x^2 p(x,t) + \mathcal{O}(N^{-3}) \ , \\ & p\left(x,t+\Delta t\right) = p(x,t) + (\Delta t)\,\partial_t p(x,t) + \mathcal{O}\left((\Delta t)^2\right) \ . \end{split}$$

lacksquare The time-step is such that $arepsilon(\Delta t)=N^{-\mu}$

Formal asymptotic: Wright-Fisher process for two types

Using all these assumptions, we find the asymptotic expansion:

$$\partial_t \rho = -\frac{1}{\left(\Delta t\right)^{1-\nu}} \partial_x \left(x(1-x) \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x) \right) \rho \right) + \frac{1}{2N\Delta t} \partial_x^2 \left(x(1-x)\rho \right) .$$

Formal asymptotic: Wright-Fisher process for two types

Using all these assumptions, we find the asymptotic expansion:

$$\partial_t \rho = -\frac{1}{\left(\Delta t\right)^{1-\nu}} \partial_x \left(x(1-x) \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x) \right) \rho \right) + \frac{1}{2N\Delta t} \partial_x^2 \left(x(1-x)\rho \right) .$$

Depending on the choice of μ and ν , we have

Formal asymptotic: Wright-Fisher process for two types

Using all these assumptions, we find the asymptotic expansion:

$$\partial_t \rho = -\frac{1}{\left(\Delta t\right)^{1-\nu}} \partial_x \left(x(1-x) \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x) \right) \rho \right) + \frac{1}{2N\Delta t} \partial_x^2 \left(x(1-x)\rho \right) .$$

Depending on the choice of μ and ν , we have the diffusion equation

$$\partial_t p = \frac{1}{2} \partial_x^2 \left(x(1-x)p \right) ;$$

Formal asymptotic: Wright-Fisher process for two types

Using all these assumptions, we find the asymptotic expansion:

$$\partial_t \rho = -\frac{1}{\left(\Delta t\right)^{1-\nu}} \partial_x \left(x(1-x) \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x) \right) \rho \right) + \frac{1}{2N\Delta t} \partial_x^2 \left(x(1-x)\rho \right) .$$

Depending on the choice of μ and ν , we have the diffusion equation

$$\partial_t p = \frac{1}{2} \partial_x^2 \left(x(1-x)p \right) ;$$

the (partial differential version of the) replicator equation:

$$\partial_t p = -\partial_x \left(x(1-x) \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x) \right) p \right) ;$$

Formal asymptotic: Wright-Fisher process for two types

Using all these assumptions, we find the asymptotic expansion:

$$\partial_t \rho = -\frac{1}{\left(\Delta t\right)^{1-\nu}} \partial_x \left(x(1-x) \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x) \right) \rho \right) + \frac{1}{2N\Delta t} \partial_x^2 \left(x(1-x)\rho \right) .$$

Depending on the choice of μ and ν , we have the diffusion equation

$$\partial_t p = \frac{1}{2} \partial_x^2 \left(x(1-x)p \right) ;$$

the (partial differential version of the) replicator equation:

$$\partial_t p = -\partial_x \left(x(1-x) \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x) \right) p \right) ;$$

or the replicator-diffusion equation

$$\partial_t p = \frac{\varepsilon}{2} \partial_x^2 \left(x(1-x)p \right) - \partial_x \left(x(1-x) \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x) \right) p \right) .$$

Formal asymptotic: Wright-Fisher process for two types

The invariants become the following conservation laws:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_0^1 p(x,t)\,\mathrm{d}x=0, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\int_0^1 \phi(x)p(x,t)\,\mathrm{d}x=0,$$

where ϕ satisfies

$$\frac{\varepsilon}{2}\phi'' + \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x)\right)\phi' = 0, \quad \phi(0) = 0, \quad \phi(1) = 1.$$

Formal asymptotic: Wright-Fisher process for two types

The invariants become the following conservation laws:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_0^1 p(x,t)\,\mathrm{d}x=0, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\int_0^1 \phi(x)p(x,t)\,\mathrm{d}x=0,$$

where ϕ satisfies

$$\frac{\varepsilon}{2}\phi'' + \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x)\right)\phi' = 0, \quad \phi(0) = 0, \quad \phi(1) = 1.$$

This implies:

$$\phi(x) = \frac{\int_0^x \exp\left[-\frac{2}{\varepsilon} \int_0^{x'} \left(\psi^{(\mathbb{A})}(x'') - \psi^{(\mathbb{B})}(x'')\right) dx''\right] dx'}{\int_0^1 \exp\left[-\frac{2}{\varepsilon} \int_0^{x'} \left(\psi^{(\mathbb{A})}(x'') - \psi^{(\mathbb{B})}(x'')\right) dx''\right] dx'}.$$

Formal asymptotic: Wright-Fisher process for two types

The invariants become the following conservation laws:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_0^1 \rho(x,t)\,\mathrm{d}x=0, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\int_0^1 \phi(x)\rho(x,t)\,\mathrm{d}x=0,$$

where ϕ satisfies

$$\frac{\varepsilon}{2}\phi'' + \left(\psi^{(\mathbb{A})}(x) - \psi^{(\mathbb{B})}(x)\right)\phi' = 0, \quad \phi(0) = 0, \quad \phi(1) = 1.$$

This implies:

$$\phi(x) = \frac{\int_0^x \exp\left[-\frac{2}{\varepsilon} \int_0^{x'} \left(\psi^{(\mathbb{A})}(x'') - \psi^{(\mathbb{B})}(x'')\right) \mathrm{d}x''\right] \mathrm{d}x'}{\int_0^1 \exp\left[-\frac{2}{\varepsilon} \int_0^{x'} \left(\psi^{(\mathbb{A})}(x'') - \psi^{(\mathbb{B})}(x'')\right) \mathrm{d}x''\right] \mathrm{d}x'} \ .$$

If we start from the initial condition $ho^{\mathrm{I}}=\delta_{\mathsf{x_0}}$, then the fixation probability

The Kimura equation

The equation

$$\partial_t f = \frac{\varepsilon}{2} x (1-x) \partial_x^2 f + \gamma x (1-x) \partial_x f$$
,

with boundary condition given by f(0, t) = 0 and f(1, t) = 1 is known as the Kimura equation.

The Kimura equation

The equation

$$\partial_t f = \frac{\varepsilon}{2} x (1-x) \partial_x^2 f + \gamma x (1-x) \partial_x f$$
,

with boundary condition given by f(0, t) = 0 and f(1, t) = 1 is known as the Kimura equation.

f(x,t) is the fixation probability at time t (or before) associated to the type 1, when its initial presence is x.

The Kimura equation

The equation

$$\partial_t f = \frac{\varepsilon}{2} x (1-x) \partial_x^2 f + \gamma x (1-x) \partial_x f$$
,

with boundary condition given by f(0,t) = 0 and f(1,t) = 1 is known as the Kimura equation.

f(x, t) is the fixation probability at time t (or before) associated to the type 1, when its initial presence is x.

The adjoint of the replicator-diffusion equation generalizes the Kimura equation for more general fitnesses.

The Kimura equation

The equation

$$\partial_t f = \frac{\varepsilon}{2} x (1-x) \partial_x^2 f + \gamma x (1-x) \partial_x f$$
,

with boundary condition given by f(0, t) = 0 and f(1, t) = 1 is known as the Kimura equation.

f(x, t) is the fixation probability at time t (or before) associated to the type 1, when its initial presence is x.

The adjoint of the replicator-diffusion equation generalizes the Kimura equation for more general fitnesses.

The final state is the final fixation probability: $\lim_{t\to\infty} f(x,t) = \phi(x)$.

Fixation probability for homogeneous populations

Fixation probability for N=20 and pay-off matrix $\begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$. The red line indicates the function $\phi(x)$ for $\varepsilon=0.1125157473$.

Fixation probability for homogeneous populations

Fixation probability for N=50 and pay-off matrix $\begin{pmatrix} 9 & 4 \\ 2 & 2 \end{pmatrix}$. The red line indicates the function $\phi(x)$ for $\varepsilon=0.04315862961$.

Time evolution in the Wright-Fisher process

Number of individuals of the first type, for the Wright-Fisher process with pay-off matrix given by simulations with initial conditions of 220/300 individuals of the first type. The red line indicates the evolution of the mean.

Rigorous asymptotic: the replicator-diffusion equation for two types

Let $\mathcal{BM}^+([0,1])$ denote the positive Radon measures in [0,1].

Theorem

For a given $p^I \in \mathcal{BM}^+([0,1])$, there exists a unique (weak) solution p, with $p \in L^\infty\left([0,\infty); \mathcal{BM}^+([0,1])\right)$ and such that p satisfies the conservations laws. The solution can be written as $p(x,t) = r(x,t) + a(t)\delta_0 + b(t)\delta_1$, where $r \in C^\infty\left(\mathbb{R}^+; C^\infty([0,1])\right)$ is a classical (regular) solution to the replicator diffusion equation without boundary conditions, and δ_y denotes the singular measure supported at y. We also have that a(t) and b(t), belong to $C([0,\infty)) \cap C^\infty(\mathbb{R}^+)$. For large time, we have that $\lim_{t\to\infty} r(x,t) = 0$, uniformly, and that a(t) and b(t), the transient extinction and fixation probabilities, respectively, are monotonically increasing functions. Moreover, we have that

$$\lim_{t\to\infty} p(\cdot,t) = \pi_0[p^{\mathrm{I}}]\delta_0 + \pi_1[p^{\mathrm{I}}]\delta_1,$$

with respect to the Radon metric. Finally, the convergence rate is exponential.

Rigorous asymptotic: the replicator-diffusion equation for two types

Theorem

Let $p(x,t,N,\Delta t)$ be the solution of the finite population dynamics (of population N, time step $\Delta t=1/N$), with initial conditions given by $p^0(x,N,\Delta t)=p^0(x), x=0,1/N,2/N,\cdots,1$, for p^0 as in the previous theorem. Assume also the weak-selection limit, with $\nu=\frac{1}{2}$. Let $p_{\rm cont}(x,t)$ be the solution of the continuous model, with initial condition given by $p^0(x)$. If we write p_i^n for the i-th component of $p(x,t,N,\Delta t)$ in the n-th iteration, we have, for any $t^*>0$, that

$$\lim_{N \to \infty} p_{xN}^{tN^2} = p_{\text{cont}}(x, t), \quad x \in [0, 1], \quad t \in [0, t^*].$$

From the discrete to the continuous

We look for a simpler model for intermediate populations.

From the discrete to the continuous

We look for a simpler model for intermediate populations.

This means that we look for a differential equation for the fraction of type *i* individuals. This equation should present two time-scales associated to two different phenomena:

From the discrete to the continuous

We look for a simpler model for intermediate populations.

This means that we look for a differential equation for the fraction of type i individuals. This equation should present two time-scales associated to two different phenomena:

The first time scale will represent the natural selection;

Replicator Equation

From the discrete to the continuous

We look for a simpler model for *intermediate* populations.

This means that we look for a differential equation for the fraction of type i individuals. This equation should present two time-scales associated to two different phenomena:

The first time scale will represent the natural selection;

Replicator Equation

The second time scale will represent the genetic drift.

Diffusion to the vertexes of the simplex (pure states)

From the discrete to the continuous

We look for a simpler model for intermediate populations.

This means that we look for a differential equation for the fraction of type i individuals. This equation should present two time-scales associated to two different phenomena:

The first time scale will represent the natural selection;

The second time scale will represent the genetic drift.

Diffusion to the vertexes of the simplex (pure states)

Let the n-1-dimensional simplex be

$$S^{n-1} := \{ \mathbf{x} \in \mathbf{R}^n | |\mathbf{x}| := \sum_{i=1}^n x_i = 1, x_i \ge 0, \forall i = 1, \dots, n \}.$$

From the discrete to the continuous

We consider the discrete evolution $(|\mathbf{y}| = \sum_i y_i)$

$$ho_N(\mathsf{x},t+\Delta t) = \sum_{|\mathsf{y}|=1} \Theta_N(\mathsf{y} o \mathsf{x})
ho_N(t,\mathsf{y}) = \sum_{|\mathsf{y}|=0} \Theta_N(\mathsf{x}-\mathsf{y} o \mathsf{x})
ho_N(t,\mathsf{x}-\mathsf{y}) \,.$$

From the discrete to the continuous

We consider the discrete evolution $(|\mathbf{y}| = \sum_i y_i)$

$$ho_N(\mathsf{x},t+\Delta t) = \sum_{|\mathsf{y}|=1} \Theta_N(\mathsf{y} o \mathsf{x})
ho_N(t,\mathsf{y}) = \sum_{|\mathsf{y}|=0} \Theta_N(\mathsf{x}-\mathsf{y} o \mathsf{x})
ho_N(t,\mathsf{x}-\mathsf{y}) \,.$$

We assume the weak selection principle $\phi^{(i)}(\mathbf{y}) = 1 + \frac{\psi^{(i)}(\mathbf{y})}{N}$, and then $\bar{\phi}(\mathbf{y}) = 1 + \frac{\bar{\psi}(\mathbf{y})}{N}$.

From the discrete to the continuous

We consider the discrete evolution $(|\mathbf{y}| = \sum_i y_i)$

$$\rho_N(\mathbf{x},t+\Delta t) = \sum_{|\mathbf{y}|=1} \Theta_N(\mathbf{y}\to\mathbf{x}) \rho_N(t,\mathbf{y}) = \sum_{|\mathbf{y}|=0} \Theta_N(\mathbf{x}-\mathbf{y}\to\mathbf{x}) \rho_N(t,\mathbf{x}-\mathbf{y}) \,.$$

We assume the weak selection principle $\phi^{(i)}(\mathbf{y}) = 1 + \frac{\psi^{(i)}(\mathbf{y})}{N}$, and then $\bar{\phi}(\mathbf{y}) = 1 + \frac{\bar{\psi}(\mathbf{y})}{N}$. This implies that

$$\begin{split} \left(\frac{y_{i}\phi^{(i)}}{\bar{\phi}}\right)^{Nx_{i}} &\approx & \exp\left\{Nx_{i}\left[\log y_{i} + \log\left(1 + \frac{\psi^{(i)}(\mathbf{y})}{N}\right)\left(1 - \frac{\bar{\psi}(\mathbf{y})}{N} + \frac{\bar{\psi}^{2}(\mathbf{y})}{N^{2}}\right)\right]\right\} \\ &\approx & y_{i}^{Nx_{i}}\exp\left[x_{i}\left(\psi^{(i)}(\mathbf{y}) - \bar{\psi}\left(\mathbf{y}\right)\right) + \frac{x_{i}\bar{\psi}}{N}\left(\bar{\psi}(\mathbf{y}) - \psi^{(i)}(\mathbf{y})\right)\right] \;. \end{split}$$

From the discrete to the continuous

Using the Stirling formula $x! \approx \sqrt{2\pi x} x^x e^{-x}$ we write

$$\frac{N!}{(Nx_1)!(Nx_2)!\cdots(Nx_n)!}\approx \frac{(2\pi)^{\frac{1-n}{2}}}{N^{n-1}}\frac{N^{\frac{n-1}{2}}}{(x_1x_2\cdots x_n)^{\frac{1}{2}}x_1^{x_1N}x_2^{x_2N}\cdots x_n^{x_nN}}.$$

From the discrete to the continuous

Finally, we have

$$\Theta_{\text{N}}(\mathbf{y} \rightarrow \mathbf{x}) \approx \frac{1}{\text{N}^{n-1}} \Lambda(\mathbf{y}, \mathbf{x}, \text{N}^{-\frac{1}{2}}) \left(1 + \Xi(\mathbf{y}, \mathbf{x}, \text{N}^{-\frac{1}{2}}) + o(\text{N}^{-1})\right) \; , \label{eq:theta_N}$$

where

$$\begin{split} & \Lambda(\mathbf{y}, \mathbf{x}, z) := \frac{(2\pi)^{\frac{1-n}{2}} z^{1-n}}{(x_1 x_2 \cdots x_n)^{\frac{1}{2}}} \prod_{i=1}^n \left(\frac{y_i}{x_i}\right)^{\frac{x_i}{z^2}} \\ & \Xi(\mathbf{y}, \mathbf{x}, z) := \sum_{i=1}^n \left[x_i \left(\psi^{(i)}(\mathbf{y}) - \bar{\psi}(\mathbf{y}) \right) + z^2 x_i \bar{\psi}(\mathbf{y}) \left(\bar{\psi}(\mathbf{y}) - \psi^{(i)}(\mathbf{y}) \right) \right] \ . \end{split}$$

Note that Ξ is associated to the drift generated by the fitness; i.e., if $\psi^{(i)}(\mathbf{y})$ is constant, then $\Xi(\mathbf{y},\mathbf{x},N)=0$.

From the discrete to the continuous

We introduce the new variables $au_i = y_i \sqrt{N}$ and $z = \frac{1}{\sqrt{N}}$.

Lemma

For large N (and then small z) the neutral transition probability Λ scales as

$$\Lambda(\mathbf{x}-z\boldsymbol{\tau},\mathbf{x},z)\approx\frac{(2\pi)^{\frac{1-n}{2}}z^{1-n}}{(x_1x_2\cdots x_n)^{\frac{1}{2}}}\exp\left(-\frac{1}{2}\mathcal{Q}(\boldsymbol{\tau},\boldsymbol{\tau})\right),$$

where \mathcal{Q} is a quadratic form with associated eigenvalues $\lambda_1,\cdots,\lambda_{n-1}$. These eigenvalues are the eigenvalues of the matrix $\mathbf{F}=(F_{ij})$, $i,j=1,\cdots,n-1$, such that $F_{ii}=x_i^{-1}+x_n^{-1}$ and $F_{ij}=x_n^{-1}$, for $i\neq j$, i.e., $\lambda_1\cdots\lambda_{n-1}=(x_1\cdots x_n)^{-1}$. This implies that

$$\int_{\mathbb{R}^{n-1}} \exp\left(-\frac{1}{2}\mathcal{Q}(\boldsymbol{\tau},\boldsymbol{\tau})\right) \mathrm{d}\boldsymbol{\tau} = (2\pi)^{\frac{n-1}{2}} \sqrt{x_1 \cdots x_n} \; .$$

From the discrete to the continuous

Lemma

For large N (and then small z) the neutral transition probability Λ has the following first moments:

$$\begin{split} z^{n-1} & \int \Lambda(\mathbf{x}, \mathbf{x} + z \boldsymbol{\tau}, z) \mathrm{d} \boldsymbol{\tau} = \int \Lambda(\mathbf{x}, \mathbf{x} + \mathbf{y}, z) \mathrm{d} \mathbf{y} = 1 \ , \\ z^n & \int \tau_i \Lambda(\mathbf{x}, \mathbf{x} + z \boldsymbol{\tau}, z) \mathrm{d} \boldsymbol{\tau} = 0 \ , \\ z^{n+1} & \int \tau_i \tau_j \Lambda(\mathbf{x}, \mathbf{x} + z \boldsymbol{\tau}, z) \mathrm{d} \boldsymbol{\tau} = \mathrm{o}(z^3) + z^2 \times \left\{ \begin{array}{l} (-x_i x_j) & \text{if } i \neq j \ , \ i, j \leq n-1 \ , \\ x_i (1 - x_i) & \text{if } i = j \leq n-1 \ . \end{array} \right. \end{split}$$

From the discrete to the continuous

$$\int p(\mathbf{x}, t + \Delta t) g(\mathbf{x}) d\mathbf{x} \approx \iint \Theta_N(\mathbf{x} - \mathbf{y} \to \mathbf{x}) p(\mathbf{x} - \mathbf{y}, t) N^{n-1} g(\mathbf{x}) d\mathbf{x} d\mathbf{y}$$

$$\approx \frac{1}{z^{n-1}} \iint \Theta_{\frac{1}{z^2}}(\mathbf{x} - z\boldsymbol{\tau} \to \mathbf{x}) p(\mathbf{x} - z\boldsymbol{\tau}, t) g(\mathbf{x}) d\boldsymbol{\tau} d\mathbf{x}$$

From the discrete to the continuous

$$\int p(\mathbf{x}, t + \Delta t) g(\mathbf{x}) d\mathbf{x} \approx \iint \Theta_N(\mathbf{x} - \mathbf{y} \to \mathbf{x}) p(\mathbf{x} - \mathbf{y}, t) N^{n-1} g(\mathbf{x}) d\mathbf{x} d\mathbf{y}$$

$$\approx \frac{1}{z^{n-1}} \iint \Theta_{\frac{1}{z^2}}(\mathbf{x} - z\tau \to \mathbf{x}) p(\mathbf{x} - z\tau, t) g(\mathbf{x}) d\tau d\mathbf{x}$$

$$\approx z^{n-1} \iint [1 + \Xi(\mathbf{x} - z\tau, \mathbf{x}, z)] \Lambda(\mathbf{x} - z\tau, \mathbf{x}, z) p(\mathbf{x} - z\tau, t) g(\mathbf{x}) d\tau d\mathbf{x}$$

From the discrete to the continuous

$$\int p(\mathbf{x}, t + \Delta t) g(\mathbf{x}) d\mathbf{x} \approx \iint \Theta_N(\mathbf{x} - \mathbf{y} \to \mathbf{x}) p(\mathbf{x} - \mathbf{y}, t) N^{n-1} g(\mathbf{x}) d\mathbf{x} d\mathbf{y}$$

$$\approx \frac{1}{z^{n-1}} \iint \Theta_{\frac{1}{z^2}}(\mathbf{x} - z\tau \to \mathbf{x}) p(\mathbf{x} - z\tau, t) g(\mathbf{x}) d\tau d\mathbf{x}$$

$$\approx z^{n-1} \iint \left[1 + \Xi(\mathbf{x} - z\tau, \mathbf{x}, z) \right] \Lambda(\mathbf{x} - z\tau, \mathbf{x}, z) p(\mathbf{x} - z\tau, t) g(\mathbf{x}) d\tau d\mathbf{x}$$

$$= z^{n-1} \iint \left[1 + \Xi(\mathbf{x}, \mathbf{x} + z\tau, z) \right] \Lambda(\mathbf{x}, \mathbf{x} + z\tau, z) p(\mathbf{x}, t) g(\mathbf{x} + z\tau) d\tau d\mathbf{x}$$

From the discrete to the continuous

$$\int \rho(\mathbf{x}, t + \Delta t) g(\mathbf{x}) d\mathbf{x} \approx \iint \Theta_N(\mathbf{x} - \mathbf{y} \to \mathbf{x}) \rho(\mathbf{x} - \mathbf{y}, t) N^{n-1} g(\mathbf{x}) d\mathbf{x} d\mathbf{y}$$

$$\approx \frac{1}{z^{n-1}} \iint \Theta_{\frac{1}{z^2}}(\mathbf{x} - z\tau \to \mathbf{x}) \rho(\mathbf{x} - z\tau, t) g(\mathbf{x}) d\tau d\mathbf{x}$$

$$\approx z^{n-1} \iint \left[1 + \Xi(\mathbf{x} - z\tau, \mathbf{x}, z) \right] \Lambda(\mathbf{x} - z\tau, \mathbf{x}, z) \rho(\mathbf{x} - z\tau, t) g(\mathbf{x}) d\tau d\mathbf{x}$$

$$= z^{n-1} \iint \left[1 + \Xi(\mathbf{x}, \mathbf{x} + z\tau, z) \right] \Lambda(\mathbf{x}, \mathbf{x} + z\tau, z) \rho(\mathbf{x}, t) g(\mathbf{x} + z\tau) d\tau d\mathbf{x}$$

$$\approx z^{n-1} \iint \left[1 + z \sum_{i=1}^{n} \tau_i \left(\psi^{(i)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) + o(z^3) \right] \Lambda(\mathbf{x}, \mathbf{x} + z\tau, z) \rho(\mathbf{x}, t)$$

$$\times \left[g(\mathbf{x}, t) + z \sum_{j=1}^{n-1} \tau_j \partial_{x_j} g(\mathbf{x}) + \frac{z^2}{2} \sum_{k,l=1}^{n-1} \tau_k \tau_l \partial_{x_k x_k}^2 g(\mathbf{x}) \right] d\tau d\mathbf{x}$$

$$\begin{split} &\int \rho(\mathbf{x},t+\Delta t)g(\mathbf{x})\mathrm{d}\mathbf{x} \\ &\approx z^{n-1} \iint \Lambda(\mathbf{x},\mathbf{x}+z\boldsymbol{\tau},z)\rho(\mathbf{x},t)g(\mathbf{x})\mathrm{d}\boldsymbol{\tau}\mathrm{d}\mathbf{x} \\ &+z^n \iint \rho(\mathbf{x},t) \left[\sum_{i=1}^n \left(\psi^{(i)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) \tau_i + \sum_{j=1}^{n-1} \tau_j \partial_{x_j} g(\mathbf{x}) \right] \Lambda(\mathbf{x},\mathbf{x}+z\boldsymbol{\tau},z)\mathrm{d}\boldsymbol{\tau}\mathrm{d}\mathbf{x} \\ &+z^{n+1} \iint \rho(\mathbf{x},t) \left[\sum_{k,l=1}^{n-1} \frac{\tau_k \tau_l}{2} \partial_{x_k x_l}^2 g(\mathbf{x}) + \sum_{i=1}^n \sum_{j=1}^{n-1} \partial_{x_j} g(\mathbf{x}) (\psi^{(i)}(\mathbf{x}) - \bar{\psi}(\mathbf{x})) \tau_i \tau_j \right] \\ &\times \Lambda(\mathbf{x},\mathbf{x}+z\boldsymbol{\tau},z)\mathrm{d}\boldsymbol{\tau}\mathrm{d}\mathbf{x} \ . \end{split}$$

$$\int \rho(\mathbf{x}, t + \Delta t) g(\mathbf{x}) d\mathbf{x}$$

$$\approx \int \rho(\mathbf{x}, t) g(\mathbf{x}) d\mathbf{x}$$

$$+ z^{n} \iint \rho(\mathbf{x}, t) \left[\sum_{i=1}^{n} \left(\psi^{(i)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) \tau_{i} + \sum_{j=1}^{n-1} \tau_{j} \partial_{x_{j}} g(\mathbf{x}) \right] \Lambda(\mathbf{x}, \mathbf{x} + z\tau, z) d\tau d\mathbf{x}$$

$$+ z^{n+1} \iint \rho(\mathbf{x}, t) \left[\sum_{k,l=1}^{n-1} \frac{\tau_{k} \tau_{l}}{2} \partial_{x_{k} x_{l}}^{2} g(\mathbf{x}) + \sum_{i=1}^{n} \sum_{j=1}^{n-1} \partial_{x_{j}} g(\mathbf{x}) (\psi^{(i)}(\mathbf{x}) - \bar{\psi}(\mathbf{x})) \tau_{i} \tau_{j} \right]$$

$$\times \Lambda(\mathbf{x}, \mathbf{x} + z\tau, z) d\tau d\mathbf{x} .$$

$$\int \rho(\mathbf{x}, t + \Delta t) g(\mathbf{x}) d\mathbf{x}$$

$$\approx \int \rho(\mathbf{x}, t) g(\mathbf{x}) d\mathbf{x}$$

$$+ 0$$

$$+ z^{n+1} \iint \rho(\mathbf{x}, t) \left[\sum_{k, l=1}^{n-1} \frac{\tau_k \tau_l}{2} \partial_{x_k x_l}^2 g(\mathbf{x}) + \sum_{i=1}^n \sum_{j=1}^{n-1} \partial_{x_j} g(\mathbf{x}) (\psi^{(i)}(\mathbf{x}) - \bar{\psi}(\mathbf{x})) \tau_i \tau_j \right]$$

$$\times \Lambda(\mathbf{x}, \mathbf{x} + z \tau, z) d\tau d\mathbf{x}.$$

$$\int \rho(\mathbf{x}, t + \Delta t) g(\mathbf{x}) d\mathbf{x}$$

$$\approx \int \rho(\mathbf{x}, t) g(\mathbf{x}) d\mathbf{x}$$

$$+ 0$$

$$+ z^2 \int g(\mathbf{x}) \left[\frac{1}{2} \sum_{k=1}^{n-1} \partial_{x_k}^2 \left(x_k (1 - x_k) \rho(\mathbf{x}, t) \right) - \frac{1}{2} \sum_{k,l=1, k \neq l}^{n-1} \partial_{x_k x_l}^2 \left(x_k x_l \rho(\mathbf{x}, t) \right) - \sum_{i=1}^{n-1} \partial_{x_j} \left(x_i \left(\psi^{(j)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) \rho(\mathbf{x}, t) \right) \right] d\mathbf{x} .$$

From the discrete to the continuous

Imposing $\Delta t = z^2 = \frac{1}{N}$, we have

$$\partial_{t} \rho = \frac{1}{2} \sum_{k=1}^{n-1} \partial_{x_{k}}^{2} \left(x_{k} (1 - x_{k}) \rho(\mathbf{x}, t) \right) - \frac{1}{2} \sum_{k,l=1, k \neq l}^{n-1} \partial_{x_{k} x_{l}}^{2} \left(x_{k} x_{l} \rho(\mathbf{x}, t) \right) - \sum_{j=1}^{n-1} \partial_{x_{j}} \left(x_{j} \left(\psi^{(j)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) \rho(\mathbf{x}, t) \right)$$

We call this equation the replicator-diffusion equation:

$$\partial_t \rho = \frac{1}{2} \sum_{i,j=1}^{n-1} \partial_{x_i x_j}^2 \left(D_{ij} \rho \right) - \sum_{i=1}^{n-1} \partial_{x_i} (\Omega_i \rho) .$$

The replicator equation appears...

The replicator-diffusion equation is given by

$$\partial_t p = \frac{1}{2} \sum_{k=1}^{n-1} \partial_{x_k}^2 \left(x_k (1 - x_k) p(\mathbf{x}, t) \right)$$

$$- \frac{1}{2} \sum_{k,l=1, k \neq l}^{n-1} \partial_{x_k x_l}^2 \left(x_k x_l p(\mathbf{x}, t) \right) - \sum_{j=1}^{n-1} \partial_{x_j} \left(x_j \left(\psi^{(j)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) p(\mathbf{x}, t) \right)$$

The replicator equation appears...

The replicator-diffusion equation is given by

$$\frac{1}{\varepsilon}\partial_{t}\rho = \frac{1}{2}\sum_{k=1}^{n-1}\partial_{x_{k}}^{2}\left(x_{k}(1-x_{k})\rho(\mathbf{x},t)\right) \\
-\frac{1}{2}\sum_{k,l=1,k\neq l}^{n-1}\partial_{x_{k}x_{l}}^{2}\left(x_{k}x_{l}\rho(\mathbf{x},t)\right) - \frac{1}{\varepsilon}\sum_{j=1}^{n-1}\partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right)\rho(\mathbf{x},t)\right)$$

If we consider strong selection $(\psi \to \frac{\psi}{\varepsilon})$ and short times $(t \to \varepsilon t)$ for a very small ε we find

The replicator equation appears...

The replicator-diffusion equation is given by

$$\frac{1}{\varepsilon}\partial_{t}\rho = \frac{1}{2}\sum_{k=1}^{n-1}\partial_{x_{k}}^{2}\left(x_{k}(1-x_{k})\rho(\mathbf{x},t)\right) \\
-\frac{1}{2}\sum_{k,l=1,k\neq l}^{n-1}\partial_{x_{k}x_{l}}^{2}\left(x_{k}x_{l}\rho(\mathbf{x},t)\right) - \frac{1}{\varepsilon}\sum_{j=1}^{n-1}\partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x})-\bar{\psi}(\mathbf{x})\right)\rho(\mathbf{x},t)\right)$$

If we consider strong selection $(\psi \to \frac{\psi}{\varepsilon})$ and short times $(t \to \varepsilon t)$ for a very small ε we find for $\varepsilon \to 0$

$$\partial_t p = -\sum_{j=1}^{n-1} \partial_{x_j} \left(x_j \left(\psi^{(j)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) p(\mathbf{x}, t) \right)$$

The replicator equation appears...

The replicator-diffusion equation is given by

$$\frac{1}{\varepsilon}\partial_{t}\rho = \frac{1}{2}\sum_{k=1}^{n-1}\partial_{x_{k}}^{2}\left(x_{k}(1-x_{k})\rho(\mathbf{x},t)\right)$$

$$-\frac{1}{2}\sum_{k,l=1,k\neq l}^{n-1}\partial_{x_{k}x_{l}}^{2}\left(x_{k}x_{l}\rho(\mathbf{x},t)\right) - \frac{1}{\varepsilon}\sum_{j=1}^{n-1}\partial_{x_{j}}\left(x_{j}\left(\psi^{(j)}(\mathbf{x}) - \bar{\psi}(\mathbf{x})\right)\rho(\mathbf{x},t)\right)$$

If we consider strong selection $(\psi \to \frac{\psi}{\varepsilon})$ and short times $(t \to \varepsilon t)$ for a very small ε we find for $\varepsilon \to 0$

$$\partial_t p = -\sum_{j=1}^{n-1} \partial_{x_j} \left(x_j \left(\psi^{(j)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) p(\mathbf{x}, t) \right)$$

This equation is equivalent to the replicator dynamics.

Mixed states fade away...

Theorem

Let p be the solution of replicator-diffusion equation. Then, $p^{\infty} := \lim_{t \to \infty} p(\cdot,t)$, is a linear combination of Dirac-deltas supported at the vertexes of the simplex.

Mixed states fade away...

Theorem

Let p be the solution of replicator-diffusion equation. Then, $p^{\infty} := \lim_{t \to \infty} p(\cdot, t)$, is a linear combination of Dirac-deltas supported at the vertexes of the simplex.

We change variables and re-write the replicator-diffusion equation as

$$\partial_t u = \frac{1}{\omega} \nabla \cdot \left[\omega \left(\frac{1}{2} D \nabla u - \mathbf{B} u \right) \right] ,$$

where $u=\mathrm{e}^{-\theta}p/\lambda$, $\omega=\mathrm{e}^{\theta}/\lambda$, with $\lambda=x_1x_2\cdots x_n$ and $\nabla\theta$ and \mathbf{B} are associated to the Hodges decomposition of the drift part.

Mixed states fade away...

Theorem

Let p be the solution of replicator-diffusion equation. Then, $p^{\infty} := \lim_{t \to \infty} p(\cdot,t)$, is a linear combination of Dirac-deltas supported at the vertexes of the simplex.

We change variables and re-write the replicator-diffusion equation as

$$\partial_t u = \frac{1}{\omega} \nabla \cdot \left[\omega \left(\frac{1}{2} D \nabla u - \mathbf{B} u \right) \right] ,$$

where $u=\mathrm{e}^{-\theta}p/\lambda$, $\omega=\mathrm{e}^{\theta}/\lambda$, with $\lambda=x_1x_2\cdots x_n$ and $\nabla\theta$ and $\mathbf B$ are associated to the Hodges decomposition of the drift part. This operator is negative-definite and there exists $\alpha>0$, such that

$$\frac{1}{2}\partial_t \int u^2 \omega dV = \int_{S^n} \nabla \cdot \left[\omega \left(\frac{1}{2} D \nabla u - \mathcal{B} u \right) \right] u \, dV < -\alpha \int_{S^n} u^2 \omega \, dV.$$

Mixed states fade away...

Then

$$\int p^2 e^{-\theta} \lambda dx = \int u^2 \omega dx \stackrel{t \to \infty}{\to} 0 ,$$

and, together with the conservation laws $\partial_t \int \phi_i p \mathrm{d}x = 0$, $i = 1, \ldots, n$ we have that p concentrates on the zeros of λ , i.e., the boundary of the simplex.

Mixed states fade away...

Then

$$\int p^2 e^{-\theta} \lambda dx = \int u^2 \omega dx \stackrel{t \to \infty}{\to} 0 ,$$

and, together with the conservation laws $\partial_t \int \phi_i p \mathrm{d}x = 0$, $i = 1, \ldots, n$ we have that p concentrates on the zeros of λ , i.e., the boundary of the simplex. This is interpreted as the extinction of one type. We iterate this reasoning n-1 times and conclude that all but one type will be extinct, i.e., p concentrates on the vertexes of the simplex.

Mixed states fade away...

Then

$$\int p^2 e^{-\theta} \lambda dx = \int u^2 \omega dx \stackrel{t \to \infty}{\to} 0 ,$$

and, together with the conservation laws $\partial_t \int \phi_i p \mathrm{d}x = 0$, $i = 1, \ldots, n$ we have that p concentrates on the zeros of λ , i.e., the boundary of the simplex. This is interpreted as the extinction of one type. We iterate this reasoning n-1 times and conclude that all but one type will be extinct, i.e., p concentrates on the vertexes of the simplex. Thus, we postulate that the final state is given by

$$p^{\infty} = \sum_{v \in V} c_v \delta_v ,$$

where V is the set of all vertexes of the simplex S^n .

The replicator equation appears...

Theorem

Let p_0 be the solution of the replicator-diffusion equation, with $\varepsilon=0$ and let p_{ε} be a solution to replicator-diffusion equation, with $\varepsilon>0$. Then, there exits a C such that, for $\tau\leq C$, we have

$$||p_{\varepsilon}(\cdot,\tau)-p_0(\cdot,\tau)||_{\infty}\leq C\varepsilon.$$

Thus p_0 is the leading order asymptotic approximation to p_{ε} , for $t < \varepsilon C$.

The replicator equation appears...

Theorem

Let p_0 be the solution of the replicator-diffusion equation, with $\varepsilon=0$ and let p_{ε} be a solution to replicator-diffusion equation, with $\varepsilon>0$. Then, there exits a C such that, for $\tau\leq C$, we have

$$||p_{\varepsilon}(\cdot,\tau)-p_0(\cdot,\tau)||_{\infty}\leq C\varepsilon.$$

Thus p_0 is the leading order asymptotic approximation to p_{ε} , for $t < \varepsilon C$.

Define $w_{\varepsilon}=p_{\varepsilon}-p_0$, and

$$\partial_{t}w_{\varepsilon} = \frac{\varepsilon}{2} \sum_{i,j=1}^{n-1} \partial_{ij} \left(D_{ij} w_{\varepsilon} \right) - \sum_{i=1}^{n-1} \partial_{x_{i}} \left(\Omega_{i} w_{\varepsilon} \right) + \frac{\varepsilon}{2} \sum_{i,j=1}^{n-1} \partial_{x_{i} x_{j}} \left(D_{ij} p_{0} \right) , \quad w_{\varepsilon}|_{t=0} = 0$$

General fitness function and n types

The dual of the replicator-diffusion equation generalizes the Kimura equation for *n* types and general fitness:

$$\partial_t f = \frac{\varepsilon}{2} \sum_{k=1}^{n-1} x_k (1 - x_k) \partial_k^2 f - \frac{1}{2} \sum_{k,l=1; k \neq l}^{n-1} x_k x_l \partial_{kl}^2 f + \sum_{j=1}^{n-1} x_j \left(\psi^{(j)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) \partial_j f$$

General fitness function and n types

The dual of the replicator-diffusion equation generalizes the Kimura equation for n types and general fitness:

$$\partial_t f = \frac{\varepsilon}{2} \sum_{k=1}^{n-1} x_k (1 - x_k) \partial_k^2 f - \frac{1}{2} \sum_{k,l=1;k\neq l}^{n-1} x_k x_l \partial_{kl}^2 f + \sum_{j=1}^{n-1} x_j \left(\psi^{(j)}(\mathbf{x}) - \bar{\psi}(\mathbf{x}) \right) \partial_j f$$

The function f gives the fixation probability of a given type. The precise type will be fixed by the boundary conditions imposed to f.

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.

Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.

Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.

Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:

- On the faces 1-3 and 2-3 f is the solution of the generalized Kimura equation with boundary conditions given by

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.

Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:

- On the faces 1-3 and 2-3 f is the solution of the generalized Kimura equation with boundary conditions given by
 - $f|_3 = 1;$

General fitness function and n types

For example, let us consider f as the final fixation probability of type 3 in the Rock-Scissor-Paper game.

Then, f is the solution of the generalized Kimura equation in the simplex with boundary conditions given by:

- ② On the faces 1-3 and 2-3 f is the solution of the generalized Kimura equation with boundary conditions given by
 - $f|_3=1$;
 - $f|_{1,2}=0.$

General fitness function and n types

Fixation probability of a Paper in the Rock-Scissor-Paper game.

 We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
 - it is defined in the simplex;

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
 - it is defined in the simplex;
 - it does not need boundary conditions;

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
 - it is defined in the simplex;
 - it does not need boundary conditions;
 - the conservation laws from the discrete dynamics guarantee the uniqueness of solution;

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
 - it is defined in the simplex;
 - it does not need boundary conditions;
 - the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
 - the initial dynamics is given by the replicator dynamics;

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
 - it is defined in the simplex;
 - it does not need boundary conditions;
 - the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
 - the initial dynamics is given by the replicator dynamics;
 - the final state is a superposition of Dirac deltas at the vertexes of the simplex;

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
 - it is defined in the simplex;
 - it does not need boundary conditions;
 - the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
 - the initial dynamics is given by the replicator dynamics;
 - the final state is a superposition of Dirac deltas at the vertexes of the simplex;
 - these Dirac deltas are generated in finite time (in fact, at $t = 0^{+1}$);

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
 - it is defined in the simplex;
 - it does not need boundary conditions;
 - the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
 - the initial dynamics is given by the replicator dynamics;
 - the final state is a superposition of Dirac deltas at the vertexes of the simplex;
 - these Dirac deltas are generated in finite time (in fact, at $t = 0^{+}!$);
 - the associated hyperbolic equation (limit of no diffusion) is *more* regular than the parabolic equation.

- We constructed a degenerated parabolic partial differential equation that works as an approximation of the discrete Wright-Fisher processes. This PDE is such that
 - it is defined in the simplex;
 - it does not need boundary conditions;
 - the conservation laws from the discrete dynamics guarantee the uniqueness of solution;
 - the initial dynamics is given by the replicator dynamics;
 - the final state is a superposition of Dirac deltas at the vertexes of the simplex;
 - these Dirac deltas are generated in finite time (in fact, at $t = 0^{+}!$);
 - the associated hyperbolic equation (limit of no diffusion) is *more* regular than the parabolic equation.

