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• Talk Nico Stollenwerk:

Dynamic noise, chaos and parameter estimation in pop-

ulation biology

Parameter estimation framework

• Talk Máıra Aguiar:

How much complexity is needed to describe dengue

haemorrhagic fever incidence data

Model complexity evaluation related to incidence data

• Here: Model analysis with Bifurcation analysis



Outline

• multi-strain epidemiological model

– local bifurcations, global bifurcations

– symmetry, Hopf- bifurcation and Torus bifurcation,

chaos

• seasonally forced multi-strain epidemiological model

– Arnold tongues



Bifurcation analysis: Nonlinear Dynamical System Theory

• Continuous-time systems (sets of odes)

• Discrete-time systems (maps)

• Periodically force systems (odes and maps)

Long-term dynamics

• Limit sets: equilibria, limit cycles and chaotic attrac-
tors

• Stability of limit sets



Dependency on parameters

• critical parameter values where dynamics changes qual-

itatively

• continuation of limit sets

• Bifurcations: linearisation, eigenvalues of Jacobian ma-

trix or Lyapunov exponents from time series



Dengue fever model

with antibody-dependent enhancement (ADE)
and temporary cross immunity

Ṡ = − β

N
S(I1 + φI21)− β

N
S(I2 + φI12) + μ(N − S)

İ1 =
β

N
S(I1 + φI21)− (γ + μ)I1

İ2 =
β

N
S(I2 + φI12)− (γ + μ)I2

Ṙ1 = γI1 − (α+ μ)R1

Ṙ2 = γI2 − (α+ μ)R2

Ṡ1 = − β

N
S1(I2 + φI12) + αR1 − μS1

Ṡ2 = − β

N
S2(I1 + φI21) + αR2 − μS2

İ12 =
β

N
S1(I2 + φI12)− (γ + μ)I12

İ21 =
β

N
S2(I1 + φI21)− (γ + μ)I21

Ṙ = γ(I12 + I21)− μR



Var. Description

S Susceptibles to both strains

Ii Infected with strain i

Ri Recovered from infection with strain i

Si Immune against first infection strain i but susceptible to j

Iij Si Reinfected with strain j

either by meeting I2 or by meeting I12

R Immune to both strains

Two different strains:

i = 1, j = 2 and i = 2, j = 1

R = N −(S+ I1+ I2+R1+R2+S1+S2+ I12+ I21) where

N is population size



Par. Description Values

N population size 100

μ new born susceptible rate 1/65

γ recovery rate 52

β0 infection rate 2γ

α temporary cross-immunity rate 2, free

ρ external infected portion 0, free

φ ratio of contribution to force of infection free

η seasonal force 0.1,0.2,0.35, free

T0 period of system

T period of forcing 1 year



One-parameter bifurcation diagram:

total infected I1 + I2 + I12 + I21
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Bifurcations

Symbol Description bifurcation

Equilibrium

H Hopf

Equilibrium, limit cycle

T Tangent (saddle node)

P Pitchfork

Limit cycle

TR Torus (Neimark-Sacker)



Symmetries

Symmetries due to the multi-strain structure of the model

Symmetry transformation matrix S

S :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S
I1
I2
R1

R2

S1

S2

I12
I21
R



We have the following symmetry:

x∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S∗
I∗1
I∗2
R∗

1
R∗

2
S∗
1

S∗
2

I∗12
I∗21
R∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ Sx∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S∗
I∗2
I∗1
R∗

2
R∗

1
S∗
2

S∗
1

I∗21
I∗12
R∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



For the right-hand side f of the ODE system

ẋ = f(x, a)

symmetry is called Z2-symmetry because the following equiv-

ariance condition holds

f(Sx, a) = Sf(x, a)

with S a matrix that obeys S �= I and S2 = I, where I is

the unit matrix



Terminology: Kuznetsov (2004)

Equilibrium x∗

One equilibrium x∗:

fixed : Sx∗ = x∗

Two equilibria x∗, y∗:

S-conjugate : if Sx∗ �= x∗, y∗ = Sx∗
because S2 = I also x∗ = Sy∗

Periodic solution

fixed : Sx∗(t) = x∗(t)

symmetric : Sx∗(t) = x∗
(
t+ T0

2

)
, period T0



Limit cycles L

One limit cycle L:

S-invariant : SL = L

S-invariant cycle is either fixed or symmetric

Two limit cycles L:

Two non-invariant limit cycles (SL �= L)

S-conjugate : y∗(t) = Sx∗(t), ∀t ∈ R



The properties of symmetric systems are used with the

interpretation of the numerical bifurcation analysis results

for the Dengue fever model with antibody-dependent en-

hancement (ADE) and temporary cross immunity

Kuznetsov (2004) Elements of Applied Bifurcation Theory

gives an overview of the possible bifurcations of equilibria

and limit cycles of Z2-equivariant systems



One-parameter bifurcation diagram: α = 2, φ free variable

I1 and I2
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The system consist of 10 ode’s. For α = 2

• below Hopf ⇒ Fixed equilibrium

• Hopf H and Pitchfork P− ⇒
Symmetric stable limit cycle

• Pitchfork P−and Torus TR ⇒
Two noninvariant S-conjugate cycles

• Pitchfork P− and Pitchfork P+ ⇒ Chaos



limit cycles: φ = 0.12, between H and P
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limit cycles: φ = 0.4, between H and P
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limit cycles: φ = 0.42, between P and TR
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One-parameter bifurcation diagram:

total infected I1 + I2 + I12 + I21
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Two-parameter bifurcation diagram: α vs φ

•

•

TTR
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Lyapunov exponent spectra calculations

Lyapunov exponent spectra can be used to characterize

chaotic attractors

Here also to characterize the periodic solutions and the

related stroboscopic maps using the definition of the Lya-

punov exponents for maps



(local, one-step) Lyapunov exponent calculation

In one dimension

dx

dt
= f(x)

Taylor series expansion

f(x) = f(x0) +
df

dx

∣∣∣∣
x0

(x− x0) + · · ·

rate of change of the distance Δx(t) = (x − x0) between

the two trajectories

dΔx

dt
=

dx

dt
− dx0

dt
= f(x)− f(x0) =

df

dx

∣∣∣∣
x0

(x− x0)

Δx(t) = Δx(0)eλt ⇒ dΔx

dt
= λΔx(t) = λ(x− x0)

λ =
df

dx

∣∣∣∣
x0



(global, repeated-steps) Lyapunov exponent calculation

Stability can be analysed considering small perturbations
Δx(t) around the attractor trajectories

d

dt
Δx =

df

dx

∣∣∣∣∣
x∗(t)

·Δx

Lyapunov exponents can be calculated along the trajectory
as

λi(n) =
1

n ·Δt
ln

⎛
⎝ n∏
ν=1

|rii(ν)|
⎞
⎠

where Δt is the time-step, n the (large) number of time
step and rii are the diagonal elements of the upper trian-
gular matrix R of the ν-th QR-decomposition at the ν-th
time-step.



Stability and Lyapunov exponents

The set of Lyapunov exponents is called the Lyapunov
spectrum which can be calculated for all parameter values.

• all Lyapunov exponents negative ⇒ stable equilibrium

• one dominant zero Lyapunov exponent ⇒ stable limit
cycle

• two dominant zero Lyapunov exponents ⇒ quasi-periodicity
(for instance on a torus)

• a positive Lyapunov exponent ⇒ chaotic behaviour

• multiple positive Lyapunov exponents ⇒ hyperchaos



Limit cycles: periodic solutions with period T0

dx

dt
= A(t)(x)

Matrix A Jacobian matrix is periodic with period T0

Fundamental matrix φ all columns are linearly independent

solutions

Principal Fundamental matrix Φ when furthermore

Φ(0) = I the identity matrix

Any solution of the set of linear differential equation with

periodic coefficients and initial condition x0 = x(0) satisfies

x(T0) = Φ(T0)x0

Φ(T0) is called the Monodromy matrix



Eigenvalues μi of Φ(T0) are the multipliers

There is always an eigenvalue equal to 1. The other com-

plex multipliers determine the stability of the limit cycle

All multipliers μi inside unit cycle then stable and unstable

otherwise

Floquet normal form

φ(t) = Q(t)eRtx0

where Q and R (real) are square matrices (dimension equal

to the number of differential equations)



Lyapunov exponents periodic solutions

A Floquet exponent λi where eλiT0 is a multiplier of the

system

Real parts of the Floquet exponents are called Lyapunov

exponents

μi = eλiT0 ⇔ λi =
lnμi
T0

The zero solution is asymptotically stable if all Lyapunov

exponents are negative, Lyapunov stable if the Lyapunov

exponents are non-positive and unstable otherwise.



Link Lyapunov exponents

aperiodic ⇔ periodic solutions

Recall: Lyapunov exponents can be calculated along the

trajectory as

λi(n) =
1

n ·Δt
ln

⎛
⎝ n∏
ν=1

|rii(ν)|
⎞
⎠

Becomes for periodic solution where



m ·Δt = T0 and n = mN

λi(mN) =
1

NT0

N∑
j=1

ln

⎛
⎝ m∏
ν=1

|rii(ν)|
⎞
⎠

=
1

T0
ln

⎛
⎝ m∏
ν=1

|rii(ν)|
⎞
⎠

=
lnμi
T0

where μi is multiplier

periodic solution: Alternative methods to calculate

multipliers ⇔ exponents



Seasonal effects, Periodic forcing: Non-autonomous

system: β(t)

β(t) = β0
(
1+ η cos(ωt)

)

with

ω = 2π
1

T

period T of forcing

T = 1 year

seasonal force is 0 ≤ η ≤ 1



Hopf oscillator to obtain a sinusoidal signal

To use computer packages for autonomous systems such

as auto, a non-autonomous system can be augmented with

the following two equations

ẋ = −ωy + x(η2 − (x2 + y2))

ẏ = ωx+ y(η2 − (x2 + y2))

to transform non-autonomous system in an autonomous

system



Polar coordinates:

x = r · cos(ϑ) and y = r · sin(ϑ)
r =

√
x2 + y2 and ϑ = arctan(y/x)

The equations are now decoupled:

ṙ = r(η2 − r2)

ϑ̇ = ω

initial conditions r(0) = r0 and ϑ(0) = 0 then solution

r(t) = η

(
1−

(
1− η2

r20

)
e−2η2t

)−1
2

ϑ(t) = ωt

This periodic solution is stable because we have limt→∞ r(t) =
η, independent of r0 > 0.



Stroboscopic map

We continue with the analysis of the so called Poincaré

map. Since the system is periodically forced this map is

also called a stroboscopic map.

The analytical expression reads with initial value rn and

t = T = 1

rn+1 = η

(
1−

(
1− η2

r2n

)
e−2η2

)−1
2

where n ∈ N and initially for n = 0 we have r0 > 0.

Asymptotically we get for large n: rn → η and therefore

the multiplier equals the derivative evaluated at r = η

μ = ηe−2η2



for c = 1 and η = 1 we get λ = 0.135335.

This single multiplier is less that 1 and therefore the peri-

odic solution r = η is stable



From this we can get the solution in Cartesian coordinates

x(t) = η · cos(2πt)
y(t) = η · sin(2πt)

with 0 ≤ t ≤ T where ω = 2π and T = 1

Then

β(t) = β0
(
1+ ηcos(ωt)

)

becomes with ω = 2π

β(x) = β0
(
1+ x

)



The original 9 dimensional system is now augmented with

2 Hopf oscillator equations

Ṡ = −β(x)

N
S(I1 + φI21)−

β(x)

N
S(I2 + φI12) + μ(N − S)

İ1 =
β(x)

N
S(I1 + φI21)− (γ + μ)I1

... = ...

İ21 =
β(x)

N
S2(I1 + φI21)− (γ + μ)I21

ẋ = −2πy + x(1− (x2 + y2))

ẏ = 2πx+ y(1− (x2 + y2))



The final spectrum of 11 multipliers of this system is that

of the original system plus multiplier 1 and the multiplier

μ = 0.135335

The characteristic equation of the monodromy matrix of

the augmented system is factorized

This shows that for periodic solutions of the complete sys-

tem, one multiplier equals 1 and at least one has a magni-

tude less than 1 while the rest of the spectrum determines

its stability

The model shows a so called Z2 symmetry and this leads

to specific bifurcations



Two-parameter bifurcation diagram, η vs φ
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Two-parameter bifurcation diagram, α vs φ
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One-parameter bifurcation diagram, φ

total infected I1 + I2 + I12 + I21
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inflow of infected individuals

parameters

η: amplitude of the sinusoidal forcing function

ρ: inflow of infected individuals

Ṡ = −β(x)

N
S(I1 + ρN + φI21)−

β(x)

N
S(I2 + ρN + φI12) + μ(N − S)

İ1 =
β(x)

N
S(I1 + ρN + φI21)− (γ + μ)I1

... = ...

İ21 =
β(x)

N
S2(I1 + ρN + φI21)− (γ + μ)I21



One-parameter bifurcation diagram, T0
period
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ratio of angles 2π/θ along TR curve

θ angle between the horizontal axis and the Floquet multiplier of the

complex conjugate pair with the positive imaginary part
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One-parameter bifurcation diagram,

ln(I1 + I2 + I12 + I21) vs α: η = 0.2
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Stroboscopic map for ln(I1+ I2+ I12+ I21) with period of

T = 1 year
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One-parameter bifurcation diagram,

ln(I1 + I2 + I12 + I21) vs α : η = 0.2
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Stroboscopic map for ln(I1 + I2 + I12 + I21) with period

of T = 1 year

ln(I1 + I2 + I12 + I21)(t)
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Stroboscopic map for ln(I1 + I2 + I12 + I21) with period

of T = 1 year
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Two-parameter bifurcation diagram, η vs ρ

Arnold tongues
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Conclusions (1)

• For η = 0 the Hopf bifurcation of the autonomous sys-

tem equals the Torus bifurcation of the non-autonomous

system.

• In autonomous and non-autonomous system region of

chaotic behaviour is bounded by a Torus bifurcation

• In non-autonomous system near the Torus bifurcation

long-term periodic cycles are born and die close to ra-

tional points with respect to forcing period. So called

frequency locking in Arnold tongues.



Conclusions (2)

• Bifurcation analysis is an advanced sensitivity analysis,
where dependency of longterm dynamics on parameters
is studied.

• only equilibria and periodic solutions can be analysed

• Lyapunov exponent calculation for chaotic dynamics

• Bifurcation analysis and Lyapunov exponent analysis
are complementary

• Results are important with parameter estimation


