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� cancer is a consequence of multicellularity

� cellular genome is under permanent attack

(environmental or metabolic genotoxic agents)

� DNA replication machinery is not perfect

� many mutations are neutral

� others ���� malignant tranformation ���� clonal development

� risk of mutation: µ rate, # cells@risk, cell-lifetime

cancer

mutations



� tissue architecture has evolved

� most tissue cells have a ↘ lifetime & a ↗ turnover

���� minimize impact of mutations

� many tissues evolved a hierarchical structure 

���� tree-like structure

� at the root of the tree are the tissue-specific stem-cells

� example: hematopoiesis

� stem-cell concept was developed in hematopoiesis and has

� extended to many other tissues

� tissue resilience relies on ↘ # & ↘ turnover of stem cells

tissue architecture



hematopoietic stem cells (HSC)

self-renewal :

for how long ?

( Hayflick hypothesis, 

telomere shortening )

differentiation :

capacity to differentiate 

into all other types of blood cells

stemness is a matter of degree – you have to stand at the

root of the hematopoietic tree
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allometric scaling of hematopoiesis in land mammals

Dingli & Pacheco, PLoS ONE, 2006
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use experimental estimates for cats for calibration ( fix N0 ):

under normal conditions, ≥ 40 ! 

what model predictions   × experimental data

Dingli & Pacheco, PLoS ONE, 2006

( Abkowitz et al, Blood, 2002 )

HSC in humans                       385 ~400
( Buescher et al, J Clin Invest, 1985 )

rate HSC division 60 week -1 ~ 52-104 week -1

( Rufer, et al, J Exp Med, 1999 )

human post-transplant 111                                    ~ 116
( Nash et al, Blood, 1988 )cat = 13

mouse                                  1 1
( Abkowitz et al, PNAS , 1995 )

rate macaques 23 week-1 23 week-1

rate baboons 36 week-1 36 week-1

( Shepherd et al, Blood , 2007 )

( Shepherd et al, Blood , 2007 )

cat = 40

cat post-TRX = 8 week-1

allometric scaling of hematopoiesis in land mammals



the hematopoietic tree

� in humans ~ 400 HSC divide each once per year; 

� but : daily output of bone marrow ~ 3.5 x 1011 cells !!!

how to explain this enormous amplification given 

the slow replication rate of HSC ?

� one must consider :

differentiation

amplification

εεεε

1- εεεε



� we consider a compartmentalized struture in which cells from

upstream compartments flow into downstream compartments , 

under stationary flux conditions; 

Dingli, Traulsen & Pacheco, PLoS-ONE, 2007
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Dingli, Traulsen & Pacheco, PLoS-ONE, 2007
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trouble

normal : 10-7 < μ < 10-6 per cell per replication

normal

hematopoiesis



normal : 10-7 < μ < 10-6 per cell per replication

transient trouble

trouble



normal : 10-7 < μ < 10-6 per cell per replication

long term trouble

Æ cancer stem cells

trouble



cancer

normal

1=f

rfc =

ε

cε

cε

troubled hematopoiesis

cancer dynamics becomes a multi-scale ecology of cell competition
starting upstream with a small number of HSC & CSC and getting downstream into very large numbers of cells of all kinds



the mathematics of Darwinian cell selection

Dingli, Traulsen & Pacheco, PRSB 275 (2008) 2389

Dingli, Traulsen & Pacheco, Cell Cycle, 2007



stochastic dynamics of HSC

stochastic model for humans : 

� SC population remains constant (400); 

� HSC divide at normal rate (once per year);

� CSC divide at rate r x normal, where r = relative fitness ; 

� when a cell divides, gives rise to two new  identical cells; 

� subsequently, 1 cell is randomly selected for export; 

� HSC may suffer mutations and transform into CSC.

Dingli, Traulsen & Pacheco, Cell Cycle, 2007

cancer stem cells

normal stem cells



this stochastic model is known in 

mathematics (& population genetics)

as a 

Moran (birth-death) process

in each stochastic discrete event,  either :

— nothing happens

— the number of cells of one of the types changes by ±1

after N events, one time step has elapsed



a. select 1 cell proportional to fitness b. chosen cell replicates

c. select 1 cell at random d. chosen cell is exported
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example 1: 1 HSC is exported & nothing happens in SC pool



a. select 1 cell proportional to fitness b. chosen cell replicates

c. select 1 cell at random d. chosen cell is exported
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example 2: 1 CSC is exported & CSC-lineage gets extinct 



a. select 1 cell proportional to fitness b. chosen cell replicates

c. select 1 cell at random d. chosen cell is exported
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example 3: 1 HSC is exported & CSC number increases by 1



a. select 1 cell proportional to fitness b. chosen cell replicates & mutates

c. select 1 cell at random d. chosen cell is exported
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example 4: HSC mutations enter scene to make things worse

µ



several possible scenarios :

Dingli, Traulsen & Pacheco, Cell Cycle, 2007

stochastic dynamics of HSC

HSC

CSC



is the stochastic dynamics of cells an oddity ?



neutral evolution
&

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA
Dingli, Luzzatto & Pacheco, PNAS 105 (2008) 18496

Motoo Kimura (木村資生 Kimura Motoo, November 13, 1924 - November 13, 1994) 



paroxysmal nocturnal hemoglobinuria

� rare disease

� true stem-cell disorder since :

� it originates in the PIG-A gene of a HSC

� rate of PIG-A gene mutation is normal 

� often BMF is later observed

� a 2nd mutation leads to a fitness advantage of PNH
cells      disease expansion ( too rare an event )

� relative fitness advantage of PNH cells due to an 
imunne attack to normal HSC disease expansion

what is known :

conventional wisdom regarding disease development :

Dingli, Pacheco & Traulsen, Physical Review E77 (2008) 021915



model features

disease development

� use NSC = 400

� simulate HSC activity in virtual USA (109 virtual Americans)

� use normal mutation rate for HSC        PNH transformation

� assume neutral drift (r=1) between HSC & PNH cells

� fold data with CENSUS 2000 for USA population

� compare results with incidence data in USA



results

normal mutation rate

results above & other results suggest that it is not necessary 

to invoke a relative fitness difference to explain incidence 

of PNH

incidence = diagnosis



neutral evolution relies on the stochastic nature of cell behavior, & PNH

shows us that, likely, many individuals suffer the PIG-A mutation but are 

never diagnosed PNH, as it is more likely for the mutant to become extinct

than to evolve into a clone. This, in turn, suggests that the current way of 

approaching the (now over) 40-year old war-on-cancer, that is, 

cure = kill-every-single-cancer-cell

is perhaps not always the best; in fact, sometimes it maybe even

unnecessary.



progenitor driven
CHRONIC MYELOID LEUKEMIA

Dingli, Traulsen, Lenaerts & Pacheco,

Clinical Leukemia 2 (2008) 133

BioEssays 32 (2010) 1003

Cancer Letters 294 (2010) 43

Genes and Cancer 1, 4 (2010) 309-315 

Haematologica 95 (2010) 900-907

BMC Biology 9(2011) 41

Cell Cycle 10 (2011) 1540

PLoS-CB 7 (2011) e1002290



Chronic Myeloid Leukemia

� Hematopoietic stem cell disorder

� Initial event: Philadelphia chromosome

� ? HSC are enough to drive chronic phase ? 

� clonal expansion and myeloproliferation

� stem cell derived but progenitor cell driven

� abl-kinase inhibitors very effective

what is known :



CML dynamics

� Q-RT-PCR data from patients treated with imatinib

� 2 data sets available

� Michor et al, Nature, 2005

� Roeder et al, Nature Medicine, 2006

� other data recently available for nilotinib

� data fitting



model features

disease development

� use existing model of hematopoiesis

� how to get from HSC origin to progenitor driven

disease ? 

� bone marrow expansion εCML < ε0

treatment

� how does imatinib work ?

� does imatinib induce cell death?

� how many cells are responding to imatinib ?



disease development

� time from initial insult to diagnosis is 3.5 – 6 years

� progenitor cell expansion >14%

� total number of active HSC is not increased

� daily bone marrow output is ~ 3 x normal

treatment

� imatinib leads to εεεεIMAT > εεεε0 > εεεεCML

� imatinib does not affect HSC

� at any time a fraction z of cells responds to imatinib

model constraints



CML dynamics under imatinib

we define ( deterministic model . . . )
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fit to Michor et al. data



results

Dingli, Traulsen & Pacheco, Clinical Leukemia 2 (2008) 133



features

Dingli, Traulsen & Pacheco, Clinical Leukemia 2 (2008) 133

up to now, the # HSC driving the disease is constant in time & their 
dynamics is deterministic; when treatment is stopped, treated cells wake 
up and relapse is much faster than normal disease progression



features

Dingli, Traulsen & Pacheco, Clinical Leukemia 2 (2008) 133



� CML is driven by a small number of neoplastic stem cells

� imatinib reduces the fitness of the neoplastic cells

� many CML progenitors persist

� only a fraction of CML cells are responding to therapy at any time

� relapse is driven by CML progenitors not just HSC

� hematopoiesis is sochastic in nature, hence 

features of CML

but : 

what is the impact of stochastic effects on CML dynamics ?



stochasticity in CML

Tom Lenaerts et al. (Haematologica 95 (2010) 900-907)

. . . stochastic dynamics of 1012 cells is unfeasible



84%

in 84% of individuals, CSC population goes extint before diagnosis

in 16% of individuals, CSC population grows, on average, 1 per year

stochasticity in CML

Tom Lenaerts et al. (Haematologica 95 (2010) 900-907)



84%

in 84% of individuals, CSC population goes extint before diagnosis

in 16% of individuals, CSC population grows, on average, 1 per year

stochasticity in CML

Tom Lenaerts et al. (Haematologica 95 (2010) 900-907)



stochasticity in CML

Tom Lenaerts et al. (Haematologica 95 (2010) 900-907)



MMR

despite NOT affecting directly CSC, 

imatinib + natural selection can cure the majority of CML patients

ongoing: development of resistance mutations . . .

no LSC @ diagnosis including 16% patients with LSC @ diagnosis

stochasticity in CML

C1 C2

new MMR



stochasticity in CML

treatment with TKI-inhibitors helps an individual to stay alive and live his 

eveyday life while natural selection helps him getting rid of the cause of the 

disease; however, it takes years for one to gamble his way out of cancer. 



cancer ecology & CML treatments
Lenaerts et al., Cell Cycle 10 (2011) 1540-1544



different therapeutic power of TKI-inhibitors

� CML can be successfully treated with different TKI-inhibitors

� imatinib & nilotinib lead to distinct disease progression curves

� however, in-vitro studies show no apparent difference between 

imatinib & nilotinib

� in-vitro studies do not incorporate the ecology 

of cell competition that occurs in-vivo. 

what’s going on ? 



imatinib ���� nilotinib

model



imatinib ���� nilotinib

εεεεNILO > εεεεIMAT

zNILO ≈ zIMAT



imatinib ���� nilotinib

εεεεNILO > εεεεIMAT

zNILO ≈ zIMAT

in vitro : no differences

in vivo : important differences

(ecology of cancer cells is important)



conclusions

� hematopoiesis results from the slow replication of a limited number of active stem-cells

which scales allometrically with the mass of an adult mammal as NSC ~ M3/4

� the small number of HSC together wih their slow replication rate protect hematopoiesis

from long-term trouble. 

� the paradigm of stochastic behaviour – neutral evolution – suggests that PNH does not

result from any 2nd mutation or immune system attack – it results from the unlikely event

of a rare-mutation in a small population at a normal mutation rate. 

� stochastic effects have measurable consequences in disease progression, and lead to 

variabilities in the time to progression of stem-cell derived diseases; in CML, and in the

absence of resistance mutations, stochastic effects let TKI-inhibitors cure most patients. 

� such a broad vision of hematopoiesis paves the way to study blood diseases (e.g., PNH,

CML, CN ) as well as the detailed microscopic description of response to  therapies, such as

those associated with TKI-inhibitors (imatinib, nilotinib, dasatinib, etc.) not to mention 

studying the development of mutations which are resistant to treatment ( ongoing . . . )
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scaling considerations
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scaling relations so-far . . .

� number of HSC in adult mamals :

� number of HSC during human ontogeny :

� specific basal metabolic rate :

� average life-span :

43
55.16 MNSC ≈

)(5.5 tmNSC ≈

41
9.2

−
≈ MBc

41
6.8 ML ≈

( year-1 )

( year )

( [M] = kg )



implications . . .

Hayflick hypothesis (1961): 

cells undergo a limited number of divisions during their lifespan

from the scaling relations, each cell divides 

that is, constant & independent of the mammalian species :

a mouse-HSC and an elephant-HSC replicate, on average, the same

number of times during the ~2-year and the ~70-year lifespans of the

mouse and elephant, respectively; humans are the exception, as we

live much longer than lifespan estimate.  

04141
~~~ MMMlifespanrateN ××

−



scaling across mammals

in

CYCLIC NEUTROPENIA

Dingli, Antal, Traulsen & Pacheco, Cell Proliferation (in press)

Pacheco, Traulsen, Antal & Dingli, American Journal of Hematology, 83 (2008) 920



� rare congenital disorder

� oscillations of neutrophil count

� biological defect is the same in mammals

� architecture of hematopoiesis is invariant across mammals

� allometric scaling should relate period of oscillations

cyclic neutropenia

features

model

results :

41
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cyclic neutropenia

our model predicts a period of ~3 days for CN in mice 

this is a direct consequence of metabolic rate of mice 

does CN occur in mice ?

Grenda et al. Blood 100 (2002) 3221–3228

“Mice expressing a neutrophil elastase mutation derived from patients 

with severe congenital neutropenia have normal granulopoiesis“

� there is a study on mice which claims there is no CN

� is that true ? 

� what did they do ?

� they measured neutrophil count every week . . .

� because sampling period is a multiple

of CN period, they ever observe oscillations

~3 days

1 week



stochastic protection

THE MOST ROBUST MAMMAL



protection : the best of mammals

Lopes, Dingli, & Pacheco, Blood 110 (2007) 4120 - 4122

mass specific metabolic rate :

scaling of lifespan:

size of active SC pool :
43

41

41
~

M~N

M~B

ML

SC

c

−

prob. mutation HSC  CSC :
6

10~
−µ
p/ replication

N cells

cancer stem cells

normal stem cells

combine allometric scaling with stochastic dynamics to determine the mammal  which is 

best protected against acquired hematopoietic stem-cell disorders. 



� r is very difficult to determine experimentally; 

unfortunately, it is consensual that, in general, r is large ( >1.5 ) ; 

� when r ~ 1, large mamals are more protected than small mammals;  

� when r > 1.3, small mammals are more protected, since the probability for the

organism to acquire cancer mutations is minimized; 

� a small active HSC pool minimizes the risk of mutations; once mutations occur, the

path to full blown disease opens up easily (whenever r >1). 

protection : the best of mammals

r =1.05 : prob(mouse) = prob(M=18 kg)

r =1.10 : prob(mouse) = prob(M=125 kg)

r =1.15 : prob(mouse) = prob(M=870 kg)

r =1.20 : prob(mouse) = prob(M=5800 kg)

Lopes, Dingli, & Pacheco, Blood 110 (2007) 4120 - 4122


