Rank of Stably Dissipative Graphs

Pedro Duarte and Telmo Peixe

Departamento de Matemática and CMAF, Faculdade de Ciências, Universidade de Lisboa
pduarte@ptmat.fc.ul.pt
tjpeixe@fc.ul.pt

Abstract

For the class of stably dissipative Lotka-Volterra systems we prove that the rank of its defining matrix is completely determined by the system's graph

1. Introduction

Consider the system of differential equations, usually referred to as the Lotka-Volterra system

$$
\begin{equation*}
\dot{x}_{i}(t)=x_{i}(t)\left(r_{i}+\sum_{j=1}^{n} a_{i j} x_{j}(t)\right), \quad i=1, \ldots, n, \tag{1}
\end{equation*}
$$

where $x_{i}(t) \geq 0$ represents the density of population i in time t and r_{i} its intrinsic rate of growth or decay. Each coefficient $a_{i j}$ represents the effect of population j on population i. If $a_{i j}>$ this means that population i benefits from population $j . A=\left(a_{i j}\right)$ is said to be the interaction matrix of the system (1)
Given $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ we say that system (1), or the matrix A, are dissipative iff there is Given $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ we say that system (1), or the matrix A, are dissip

The notion of stably dissipative is due to Redheffer et al., who in a series of papers in the 80 's $[2,3,4,5,6]$ studied the asymptotic stability of this class of systems. Given a matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ we say that another real matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is a perturbation of A iff

$$
\tilde{a}_{i j}=0 \Leftrightarrow a_{i j}=0
$$

We say that a given matrix A, or (1), is stably dissipative iff any sufficiently small perturbation A of A is dissipative, i.e.,

$$
\exists \epsilon>0: \max _{i, j}\left|a_{i j}-\tilde{a}_{i j}\right|<\epsilon \Rightarrow \widetilde{A} \text { is dissipative. }
$$

When A is dissipative, the system (1) with equilibrium point $q \in \mathbb{R}^{n}$ admits the Lyapunov function

$$
\begin{equation*}
h(x)=\sum_{i=1}^{n} \frac{x_{i}-q_{i} \log x_{i}}{d_{i}} \tag{2}
\end{equation*}
$$

and by La Salle's theorem [1] we know that the attractor is contained in the set $\{\hat{h}=0\}$.
From the interaction matrix A we can construct a graph G_{A} having as vertices the n species $\{1, \ldots, n\}$. An edge is drawn connecting the vertices i and j whenever $a_{i j} \neq 0$ or $a_{j i} \neq 0$ Redheffer et al. $[2,3,4,5,6]$ have characterized the class of stably dissipative systems and its attractor in terms of the graph G_{A}. In particular, they describe a simple reduction algorithm
 G_{A}.

To describe their algorithm they convention that a vertex i is coloured black, •, if one can prove that $x_{i}=q_{i}$ on the attractor, a cross is drawn at a vertex i, \oplus, if one can prove that x_{i} is constant on the attractor, and finally, all other vertices are coloured white, o.
To start this algorithm, as $a_{i i} \leq 0$ for all i, they
(I) colour in black, • , every vertex $i \in\{1, \ldots, n\}$ such that $a_{i i}<0$, which implies that $x_{i}=$ on the attractor, and in white, \circ, all other vertices.

The reduction procedure consists of the following rules, corresponding to valid inference rules: (a) If j is $\mathbf{a} \bullet$ or \oplus-vertex and all of its neighbours are \bullet, except for one vertex l, then colour as •;
(b) If j is $\mathrm{a} \bullet$ or \oplus-vertex and all of its neighbours are \bullet or \oplus, except for one vertex l, then draw \oplus at the vertex l;
(c) If j is a o-vertex and all of is neighbours are \bullet or \oplus, then draw \oplus at the vertex j.

Redheffer et al. define the reduced graph of the system, $\mathcal{R}\left(G_{A}\right)$, as the graph obtained from G_{A} by successive applications of the reduction rules (a), (b) and (c) until they can no longer be applied. In [4] Redheffer and Walter proved the fol
that the previous algorithm on G_{A} can not be improved

Theorem. Given a stably dissipative matrix A
(a) If $\mathcal{R}\left(G_{A}\right)$ has only \bullet-vertices then A is nonsingular, the stationary point q is unique and every solution of (1) converges, as $t \rightarrow \infty$, to q.
(b) If $\mathcal{R}\left(G_{A}\right)$ has only • and \oplus-vertices, but not all \bullet, then A is singular, the stationary point q is not unique, and every solution of (1) has a limit, as $t \rightarrow \infty$, that depends on the initial condition
(c) If $\mathcal{R}\left(G_{A}\right)$ has at least one o-vertex then there exists a stably dissipative matrix \widetilde{A}, with $G_{\widetilde{A}}=G_{A}$, such that the system (1) associated with \widetilde{A} has a nonconstant periodic solution. Consider now the stably dissipative matrices
$A=\left[\begin{array}{cccccc}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ -1 & -2 & 0 & 1 & 0 & 2 \\ 0 & 0 & -1 & 0 & 3 & 0 \\ 0 & 0 & 0 & -3 & -1 & 2 \\ 0 & 0 & -2 & 0 & -2 & -1\end{array}\right] \quad B=\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 \\ 0 & -1 & -2 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 2 & 0 \\ -1 & -2 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0\end{array}\right]$

Drawing the graphs G_{A} and G_{B}, we see that they are equal to the graph in fig. 1 .

Figure 1: The graph $G_{A}=G_{B}$.
If we calculate the rank of the matrices A and B we see that $\operatorname{rank}(A)=\operatorname{rank}(B)=5$. Is that coincidence, or there's any relation with the fact that both matrices share the same graph?

Recently, Zhao and Luo [8] gave a complete characterization of stably dissipative matrices
Theorem. Given $A \in \operatorname{Mat}_{n \times n}(\mathbb{R}), A$ is stably dissipative iff every cycle of G_{A} contains at least a strong link, i.e., an edge between \bullet-verices $(\cdot \bullet$) and there is a positive diagona matrix D such that

2. Main Results

Theorem. Given a graph G, all stably dissipative matrix A with graph G have the same rank.
By this theorem we can define the rank of a stably dissipative graph G, denoted hereafter by $\operatorname{rank}(G)$, as the rank of any stably dissipative matrix with graph G.

Given a stably dissipative graph G, i.e., the graph of a stably dissipative matrix, it G has no extreme o-vertex then $\mathcal{R}(G)$ has only -vertices, and in this case we can apply (a) of the first follows:
Starting from (I), let the vertex i^{\prime} be the unique connected to i by some edge of G. Then $T_{i}(G)$ is the partial graph obtained from G by removing every other edge incident with i^{\prime}.
however, the matrix rank does not change, as we state in the theorem below.

We say that a graph G has constant rank if every stably dissipative matrix A with graph G has the same rank.

Theorem (Trimming theorem). Leti i be some extreme \circ-vertex of a graph G of a stably dissipative matrix. If $T_{i}(G)$ has constant rank then so has G, and $\operatorname{rank}(G)=\operatorname{rank}\left(T_{i}(G)\right)$

The Trimming theorem gives a simple recipe to compute the rank of a graph:
(R) Trim G while possible. In the end, discard the single o-vertex components and count the remaining vertices

Now back to our example we can see in Fig. 3 the original graph and its trimmed. Applying R) we can conclude, as we stated before, that all stably dissipative matrices that share this graph have rank 5 .

Figure 3: The graph $G_{A}=G_{B}$ and its timmed.

References

1] LaSalle, J., Stably theory for ordinary differential equations, J. Diff. Eqs., 4, (1968), 57-65 [2] Redheffer, R., Volterra multipliers I, SIAM J. Alg. Disc. Math., 6, (1985), 592-611.
[3] Redheffer, R., A new class of Volterra differential equations for wich the solution are globally asymptotically stable, J. Diff. Eqs., 82, (1989), 251-268.
[4] Redheffer, R., Walter, W., Solution of the stability problem for a class of generalized Volterra prey-predator systems, J. Diff. Eqs., 52, (1984), 245-263.
[5] Redheffer, R., Zhou, Z., Global asymptotic stability for a class of many-variable Volterra prey-predator system, Nonlinear Anal. - Theory Methods Appl., 5, (1981), 1309-1329
Redheffer R Zhou Z A dass of matrix connected with Volterra prey-predator equation, SIAM J. Alg. Disc. Math., 3, (1982), 122-134
[7] Volterra, V., Leçons sur la Théorie Mathématique de la Lutte pour la Vie, Gauthier-Villars et $C^{i e}$, Paris, 1931 .
[8] Zhao, X., Luo, J., Classification and dynamics of stably dissipative Lotka-Volterra systems, Int. J. Non-linear Mech. 45, (2010), 603-607.

