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Introduction

• Complex systems dynamics (high number of entities interacting in nonlinear way, 
networks, loops and feed-back loops, etc.) - Ecosystems 

• Response of the complete network to a given perturbation (contamination, 
exploitation, global warming, …) on a particular part of the system? (amplified, 
damped, how and why?)

• processes intensities and variations;• processes intensities and variations;
• the whole system dynamics;
• from individuals to communities and back;
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MODELLING:

• How does the formulation of a process in a complex system affect the whole 
system dynamics? How to measure the impacts of a perturbation? 



Individuals

Functional 

groups

Bioenergetics – Genetic 

properties – Metabolism –

Physiology - Behaviours

Activities – Genetic and 

Metabolic expressions 

Information - Data

IntroductionIntroduction

Communities

Ecosystems

Biotic interactions –

Trophic webs

Environmental forcing –

– Energy assessments –

Human activities

Complexity
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How can we used data got in laboratory experiments to field models? How 
can we take benefit of the large amount of data obtained at small scales to 
understand global system functioning?

Can we link different data sets obtained at different scales?

For a given process in a complex system, what is the effect of its
mathematical formulation on the whole dynamics? Does it matter if it is
well quantitatively validated?

IntroductionIntroduction

well quantitatively validated?

For a given process, we often use functions even if we know that it is a bad
representation, because it is simpler : is there a simple alternative?

For an given ecosystem, many models can be developed. How to choose? 
One of them can be valid during a given time period while another will be
efficient for another period : how do we know the sequence of the models to 
use?
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STRUCTURE SENSITIVITY
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STRUCTURE SENSITIVITY



Structure Structure sensitivitysensitivity
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Sensitivity to function g ? gR : Reference model = MR

gP : Perturbed model = MP

Structure Structure sensitivitysensitivity
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Phytoplancton

Nutriments
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Structure Structure sensitivitysensitivity
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PROCESS FORMULATION :

FUNCTIONAL RESPONSE
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FUNCTIONAL RESPONSE



Functional responseFunctional response

Process which describes the biomass flux from a trophic level to another one : 
the functional response aims to describe this process at the population level. 

However, it results from many individual properties : 

• behavior (interference between predators, optimal foraging, ideal free distribution, 
etc.)

How should we formulate the functional response? At which scale?
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etc.)

• physiology (satiation, starvation, etc.)

And population properties as well:

• population densities (density-dependence effects)

• populations distribution (encounter rates, etc.)
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etc.)

• physiology (satiation, starvation, etc.)

And population properties as well:

• population densities (density-dependence effects)

• populations distribution (encounter rates, etc.)

CurrentCurrent ecosystemecosystem modelsmodels are sensitive to the are sensitive to the functionalfunctional responseresponse formulation.formulation.



Functional responseFunctional response

Small scale : experiments

Large scale : integrate spatial variability and individuals 
displacement (behavior, …) 
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Large scale : integrate spatial variability and individuals 
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Searching Handling
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Searching Handling

x is assumed constant at this
scale of description
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Holling type II (Disc equation – Holling 1959)
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FunctionalFunctional responseresponse
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FunctionalFunctional responseresponse
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FunctionalFunctional responseresponse

Local Holling type II functional responses

Global Holling type III functional response
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<0

>0

=> Conditions can be found to get the criterion for 
Holling Type III functional responses



DynamicalDynamical consequencesconsequences

1 – On each patch separately, the parameter values 
are such that periodic solutions occur.

2 – With density-dependent migration rates of the 
predator satisfying the above mentioned criterion for 
Holling Type III functional response, the system is
stabilized

3 – With constant migration rates, taking extreme
values observed in the situation described in 2, the 
system exhibits periodic fluctuations : the 
stabilization results from the change of functional

DSABNS 2012 - Lisbon

stabilization results from the change of functional
response type. 



DynamicalDynamical consequencesconsequences

• Global type III FR can emerge from local type II functional responses
associated to density-dependent displacements

• The Holling Type III functional response leads to stabilization

• The stability actually results from the type (type II functional responses
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• The stability actually results from the type (type II functional responses
lead to periodic fluctuations even if they are quantitatively close to the 
type III FR)

• The Type III results from density-dependence : the effect of density-
dependent migration rates on the global functional response can be
understood explicitely.



DynamicalDynamical consequencesconsequences

Functional response in the field : a set of functions instead of one 
function?

• Shifts between models

• We use functions to represent FR at a global scale even if we know that it is a 
bad representation, because it is simpler : is there a simple alternative?
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• Multi-stability of the fast dynamics

• Changes of fast attractors : bifurcation in the fast part of the system 
induced by the slow dynamics



SHIFTS BETWEEN MODELS : LOSS 

OF NORMAL HYPERBOLICITY
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OF NORMAL HYPERBOLICITY
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Fenichel theorem (Geometrical 

Singular Perturbation Theory)
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hbmmd.hboi.edu/ jpegs2/L261.jpg
Pseudoalteromonas sp.

Three experiments in a chemostat environment

An example of loss of normal hyperbolicity
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Three experiments in a chemostat environment
A realistic simple model (explicit substrate, resistant bacteria)



Model descriptionModel description
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An example of loss of normal hyperbolicity
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An example of loss of normal hyperbolicity
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Model descriptionModel description

Variables Unit

S 106 cell/ml

V 106 cell/ml

I 106 cell/ml

C 106 cell/ml

R 106 cell/ml

Parameters Units Values

An example of loss of normal hyperbolicity
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Parameters Units Values

K 106 cells/ml 0.3

C0 106 cells/ml 3

µ1 1/time 2.5

µ 2 1/time 1 – 4

k ml/time 0.1

β virus/lysis 10 – 60

D 1/time 0.2 – 1

λ 1/time 5

Time unit : 10 hFrom Middelboe, 2000
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The Geometrical Singular Perturbation theory allows to conclude that

the previous complete model can be reduced to the following 3D

system, under the normal hyperbolicity condition :

DH
dt

dH −= 0≈ε

Model Model analysisanalysis : Slow : Slow dynamicsdynamics (GSP (GSP TheoryTheory))

An example of loss of normal hyperbolicity
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manifold

Model Model analysisanalysis : : lossloss of normal of normal hyperbolicityhyperbolicity

An example of loss of normal hyperbolicity
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Asymptotic expansion of the invariant manifold with respect to 

the small parameter :
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Model Model analysisanalysis : Invariant manifold expansion: Invariant manifold expansion

An example of loss of normal hyperbolicity
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Let εω be the duale form of the vector field defined by the previous 

system: ( ) ( )ysysdF ,, εηωε +=

( )xPε Poincaré map

y x

Model Model analysisanalysis : Centre perturbatio: Centre perturbationn

An example of loss of normal hyperbolicity

s

y x
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( ) ( )ysysdF ,, εηωε +=

y
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x

Let εω be the duale form of the vector field defined by the previous 

system:

Model Model analysisanalysis : Centre perturbatio: Centre perturbationn

An example of loss of normal hyperbolicity
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Model Model analysisanalysis : Centre perturbatio: Centre perturbationn
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An example of loss of normal hyperbolicity
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An example of loss of normal hyperbolicity
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Conclusions (1/2)Conclusions (1/2)

•Structure sensitivity : process formulation can matter! In this case, data obtained at each
scales are needed (data associated to explicit measures of the process and data associated to the 
global dynamics on which the process acts)

•Difficulty to get a formulation for a process which integrates different scales : when
integrating different time scales, singular perturbations can help. Intuitive methods are based
on this framework (e.g. Disc Equation of Holling) 
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on this framework (e.g. Disc Equation of Holling) 

•With this approach, the link between local and global process formulation is explicit and 
preserved : the global formulation is obtained by a restriction of the complete detailed system 
on an invariant set in the phase space.

• This allows to understand how detailed mechanisms emerge at the global scale and the feed-
back of the global scale dynamics on the detailed mechanisms. 



Conclusions (2/2)Conclusions (2/2)

•Instead of one function to formulate one process at large scale, several functions can be used.

•Multiple equilibria in the fast dynamics can provide a mechanism for this multiple 
representation in large scale models.
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•The jump between the different formulations can be described by the Geometrical Singular
Perturbation Theory : follow the trajectories of the full system around the points where normal 
hyperbolicity is lost («Blow up techniques ») 

•Bifurcations of the fast dynamics induced by slow dynamics lead to shifts in the fast variables 
and can lead to various mathematical expression of the fast equilibrium with respect to slow 
variables : change of mathematical formulations at large scales
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