Mathematical modelling of immune response against Trypanosoma cruzi

Hyun Mo Yang

UNICAMP, Campinas, Brazil

Lisbon, February 08 - 10, 2012

Summary

- Introduction
- Model formulation
- Analysis of the general model
- Isolated action of the humoral response
- Isolated action of the cellular response
- Numerical simulations
- Conclusion

Introduction

Epidemiology

- Trypanosoma cruzi is the causative agent of American trypanosomiasis (Chagas' disease)
- It is transmitted by various species of bloodsucking triatomine insects
- Forms of transmission include consumption of uncooked food contaminated with faeces from infected bugs, congenital transmission, blood transfusion, organ transplantation, and accidental laboratory exposure
- T. cruzi infection is a zoonosis, and humans are merely unfortunate hosts
- 10 to 12 million people are infected with *T. cruzi*
- \blacksquare Up to 45,000 persons die each year of Chagas' disease

Chagas' disease

- The insects become infected by sucking blood from animals or humans that have circulating trypomastigotes
- The injected parasites multiply in the midgut of the insects as epimastigotes
- In the hindgut transform into infective metacyclic trypomastigotes that are discharged with the feces at the time of subsequent blood meal
- The parasites enters a variety of host cell types and multiply in the cytoplasm after transformation into amastigotes
- When multiplying amastigotes fill the host cell, they differentiate into trypomastigotes (occurring about 24 hours), and the cell ruptures
- The parasite released invade local tissues or spread hematogenously to distinct sites, this initiating further cycles of multiplication

Immune response

- In experimental models, both CD4 and CD8 T cells have been shown to be important for resistance to *T. cruzi*
- Lysis of infected macrophages by CD8-positive, cytotoxic T cells may be an important mechanism of host defense
- CD4 T cells are also necessary to generate the specific antibody that contributes to parasite clearance
- Both types of T cells produce cytokines, principally interferon gamma (IFN-γ), capable of activating macrophages to kill intracellular amastigotes
- The pathogenicity of experimental *T. cruzi* infections has been linked to the induction of immunosuppressive cytokines by the parasite following infection, which inhibit the macrophage activation capability of IFN-γ
 Humoral (from activated B, plasma cells) and cellular (from CD8-positive, cytotoxic T cells) responses are promoted by the action of CD4 T cells in order to subdue *T. cruzi* infection

Model formulation

Assumptions

- Cytokines act on activation and differentiation of T-cells into Th1 and Th2 by cytokines – Proportional to the number of *T. cruzi*
- We do not include every cell potentially involved (macrophages, NK cells, eosinophils, etc.) in the immune response
- Neither CD4 T cells as well as dendritic cells are considered
- The recruitment (migration) and proliferation of immune response cells are simply proportional to parasites quantity
- We assume that B and CD8 T cells are activated proportionally to the parasite circulating in the blood, as well as their proliferation
- Apoptosis in not considered (easy to be taken into account in numerical simulations)

Variables

- $\blacksquare T \rightarrow \mathsf{Circulating} \ \mathsf{trypanosomes} \ \mathsf{in} \ \mathsf{the} \ \mathsf{blood} \ \mathsf{stream}$
- $H \rightarrow Susceptible host cells$
- I \rightarrow Infected host cells
- $\blacksquare \quad B \quad \rightarrow \text{Inactivated B cells}$
- $\blacksquare \quad B_a \quad \rightarrow \text{Activated B cells} \text{Plasma cells}$
- $C \rightarrow$ Inactivated CD8 T cells
- $C_a \rightarrow \text{Activated CD8 T cells} \text{Cytotoxic cells}$

Parameters I

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulati

- I $\tau \rightarrow$ Average number of *T. cruzi* released by one infected cell
- $n \rightarrow \text{Average number of } T. cruzi$ penetrating one susceptible cell
- $\ \ \alpha \ \rightarrow \text{Infection rate}$

.

- $\lambda_H \rightarrow \mathsf{Host} \mathsf{ cells} \mathsf{ replenishing} \mathsf{ rate}$
- $\lambda_B \rightarrow \mathsf{B}$ cells replenishing rate (bone marrow)
- $\lambda_C \rightarrow \mathsf{CD8} \mathsf{T}$ cells replenishing rate
- $\mu_T \rightarrow T. \ cruzi$ mortality rate
- $\blacksquare \quad \mu_H \ (\mu_I) \ \rightarrow \text{Susceptible cells mortality rate (infected cells)}$

Parameters II

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

- $\mu_B \ (\mu_B^d) \ o \mathsf{B}$ cells mortality rate (additional)
- $\mu_C \ (\mu^d_C) \
 ightarrow \mathsf{CD8} \ \mathsf{T}$ cells mortality rate (additional)
- $\gamma_B \rightarrow \mathsf{B}$ cells activation rate

.

- $\gamma_C \rightarrow \text{CD8 T}$ cells activation rate
- $\delta_B \rightarrow \mathsf{Plasma} \mathsf{ cells proliferation rate}$
- $\bullet \quad \delta_C \rightarrow \mathsf{Cytotoxic\ cells\ proliferation\ rate}$
- $\bullet \quad \varepsilon \quad \rightarrow \text{Humoral response rate}$

Dynamical system

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

$$\begin{cases} \frac{d}{dt}T = \tau \left(\mu_{H} + \mu_{I}\right)I - \mu_{T}T - n\alpha TH - \varepsilon B_{a}T \\ \frac{d}{dt}H = \lambda_{H} - \mu_{H}H - \alpha TH \\ \frac{d}{dt}I = \alpha TH - \left(\mu_{H} + \mu_{I}\right)I - \beta IC_{a} \\ \frac{d}{dt}B = \lambda_{B} - \mu_{B}B - \gamma_{B}BT \\ \frac{d}{dt}B_{a} = \gamma_{B}BT - \left(\mu_{B} + \mu_{B}^{d}\right)B_{a} + \delta_{B}B_{a}T \\ \frac{d}{dt}C = \lambda_{C} - \mu_{C}C - \gamma_{C}CT \\ \frac{d}{dt}C_{a} = \gamma_{C}CT - \left(\mu_{C} + \mu_{C}^{d}\right)C_{a} + \delta_{C}C_{a}T \end{cases}$$

Simple, but has seven equations!!

Analysis of the general model

Trivial equilibrium point

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

 $\square P^0 = (0, H_0, 0, B_0, 0, C_0, 0), \text{ where } H_0, B_0 \text{ and } C_0 \text{ are}$

$$\begin{pmatrix}
H_0 &=& \frac{\lambda_H}{\mu_H} \\
B_0 &=& \frac{\lambda_B}{\mu_B} \\
C_0 &=& \frac{\lambda_C}{\mu_C}
\end{pmatrix}$$

Populational average amount of host cells and immune system cells found in an individual free of *T. cruzi* infection
 The trivial equilibrium P⁰ is locally asymptotically stable (LAS) when α < α₀, where

$$\alpha_0 = \frac{\mu_T \mu_H}{(\tau - n) \lambda_H} = \frac{\mu_T}{(\tau - n) H_0}$$

Global stability ($\alpha \leq \alpha_0$) using Lyapunov function $V = \tau I + T$

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

Dimensionless parameters:

$$\begin{cases} \lambda'_{H} = \frac{\lambda_{H}}{\mu_{H}} = H_{0}; & \lambda'_{B} = \frac{\lambda_{B}}{\mu_{B}} = B_{0}; & \lambda'_{H} = \frac{\lambda_{C}}{\mu_{C}} = C_{0}; \\ \alpha' = \frac{\alpha}{\mu_{H}}; & \alpha'_{0} = \frac{\alpha_{0}}{\mu_{H}}; & \beta' = \frac{\beta}{\mu_{H} + \mu_{I}}; & \varepsilon' = \frac{\varepsilon}{\mu_{T}}; \\ \gamma'_{B} = \frac{\gamma_{B}}{\mu_{B}}; & \gamma'_{C} = \frac{\gamma_{C}}{\mu_{C}}; & \delta'_{B} = \frac{\delta_{B}}{\mu_{B} + \mu_{B}^{d}}; & \delta'_{C} = \frac{\delta_{C}}{\mu_{C} + \mu_{C}}; \\ \mu_{Bd} = \frac{\mu_{B}}{\mu_{B} + \mu_{B}^{d}}; & \mu_{Cd} = \frac{\mu_{C}}{\mu_{C} + \mu_{C}^{d}}; & \mu_{HT} = \frac{\mu_{H}}{\mu_{T}}; & \mu_{HI} = \frac{\mu_{H}}{\mu_{H}}; \end{cases}$$

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

P^* has coordinates:

$$\bar{H} = \frac{H_0}{1 + \alpha \bar{T}}$$

$$\bar{I} = \frac{\mu_{HI} \alpha H_0 \bar{T}}{\left(1 + \alpha \bar{T}\right) \left(1 + \beta \bar{C}_a\right)}$$

$$\bar{B} = \frac{B_0}{1 + \gamma_B \bar{T}}$$

$$\bar{B}_a = \frac{\mu_{Bd} \gamma_B B_0 \bar{T}}{\left(1 + \gamma_B \bar{T}\right) \left(1 - \delta_B \bar{T}\right)}$$

$$\bar{C} = \frac{C_0}{1 + \gamma_C \bar{T}}$$

$$\bar{C}_a = \frac{\mu_{Cd} \gamma_C C_0 \bar{T}}{\left(1 + \gamma_C \bar{T}\right) \left(1 - \delta_C \bar{T}\right)}$$

• \overline{T} is the positive solution of the equation

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

The fifth degree $f(\bar{T})$ and third degree $g(\bar{T})$ polynomials are:

$$\begin{cases} f(\bar{T}) &= \left[\left(\frac{\alpha}{\alpha_0} - 1 \right) - \alpha \bar{T} \right] \left(1 - \delta_B \bar{T} \right) \left(1 - \delta_C \bar{T} \right) \left(1 + \gamma_B \bar{T} \right) \left(1 + \gamma_C \bar{T} \right) \\ g(\bar{T}) &= \beta \gamma_C C_0 \left(1 - \delta_B \bar{T} \right) \left(1 + \gamma_B \bar{T} \right) \left(1 + \alpha \bar{T} \right) + \varepsilon \gamma_B B_0 \left(1 - \delta_C \bar{T} \right) \left(1 + \beta \varepsilon \gamma_C C_0 \gamma_B B_0 \left(1 + \alpha \bar{T} \right) \bar{T} + n\alpha \beta \mu_{HT} \gamma_C C_0 H_0 \left(1 - \delta_B \bar{T} \right) \left(1 + \beta \varepsilon \gamma_C C_0 \gamma_B B_0 \left(1 + \alpha \bar{T} \right) \bar{T} + n\alpha \beta \mu_{HT} \gamma_C C_0 H_0 \left(1 - \delta_B \bar{T} \right) \left(1 + \beta \varepsilon \gamma_C C_0 \gamma_B B_0 \left(1 + \alpha \bar{T} \right) \bar{T} + n\alpha \beta \mu_{HT} \gamma_C C_0 H_0 \left(1 - \delta_B \bar{T} \right) \left(1 + \beta \varepsilon \gamma_C C_0 \gamma_B B_0 \left(1 + \alpha \bar{T} \right) \bar{T} + n\alpha \beta \mu_{HT} \gamma_C C_0 H_0 \left(1 - \delta_B \bar{T} \right) \left(1 + \beta \varepsilon \gamma_C C_0 \gamma_B B_0 \left(1 + \alpha \bar{T} \right) \bar{T} \right) \right)$$

 P^* to be biologically feasible, by inspecting \bar{B}_a and \bar{C}_a , must obey:

$$\begin{cases} \bar{T} < T_B = \frac{1}{\delta_B} \\ \bar{T} < T_C = \frac{1}{\delta_C} \end{cases}$$

 α > α₀ − A unique positive solution T in the range (0, δ), with δ = min {(α − α₀) /αα₀, 1/δ_B, 1/δ_C}
 Two special cases − Humoral and cellular responses acting isolated

Local stability

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

Characteristic equation is

$$h_1(\beta,\varepsilon) + \beta \times h_2 + \varepsilon \times h_3 = 0,$$

The functions $h_1(\beta,\varepsilon)$, h_2 and h_3 are

Isolated action of the humoral response

Case 1 – Humoral response only

- African trypanosomes do not have an intracellular form and multiply as trypomastigotes that circulate in the mammalian blood stream and other extracellular spaces
 - Humoral response acting isolated $\beta = 0$

$$\begin{cases} \frac{d}{dt}T = \tau \alpha TH - \mu_T T - \varepsilon B_a T \\ \frac{d}{dt}H = \lambda_H - \mu_H H - \alpha TH \\ \frac{d}{dt}B = \lambda_B - \mu_B B - \gamma_B BT \\ \frac{d}{dt}B_a = \gamma_B BT - (\mu_B + \mu_B^d) B_a + \delta_B B_a T \end{cases}$$

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

 P^* has coordinates:

$$\begin{cases}
\bar{H} = \frac{H_0}{1 + \alpha \bar{T}} \\
\bar{B} = \frac{B_0}{1 + \gamma_B \bar{T}} \\
\bar{B}_a = \frac{\mu_{Bd} \gamma_B B_0 \bar{T}}{(1 - \delta_B \bar{T}) (1 + \gamma_B \bar{T})}
\end{cases}$$

 \bar{T} is solution of the equation

$$\frac{\left(\frac{\alpha}{\alpha_0}-1\right)-\alpha\bar{T}}{1+\alpha\bar{T}} = \frac{\varepsilon\gamma_B B_0\bar{T}}{\left(1-\delta_B\bar{T}\right)\left(1+\gamma_B\bar{T}\right)}$$

All equations can be retrieved from general model by letting $\beta=0$ and n=0

Local stability

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

The characteristic equation is

$$= \varepsilon \overline{T} \left(\mu_H + \alpha \overline{T} + \psi \right) \left[\gamma_B \overline{B} \left(\mu_B + \psi \right) + \delta_B \overline{B}_a \left(\mu_B + \gamma_B \overline{T} + \psi \right) \right] + \left(\mu_B + \mu_B^d - \delta_B \overline{T} + \psi \right) \left(\mu_B + \gamma_B \overline{T} + \psi \right) \times \left[\alpha \overline{T} \left(\mu_T + \varepsilon \overline{B}_a + \psi \right) + \left(\mu_H + \psi \right) \psi \right].$$

Written as $\psi^4 + \sum_{i=1}^4 a_i \psi^{4-i} = 0$, with the coefficients a_i :

$$\begin{pmatrix}
a_1 &= (\mu_H + \alpha \bar{T}) + (\mu_B + \gamma_B \bar{T}) + (\mu_B + \mu_B^d - \delta_B \bar{T}) \\
a_2 &= (\mu_B + \mu_B^d - \delta_B \bar{T}) \left[(\mu_H + \alpha \bar{T}) + (\mu_B + \gamma_B \bar{T}) \right] + (\mu_H + \alpha \bar{T}) (\mu_E + \alpha \bar{T} (\mu_T + \varepsilon \bar{B}_a) + \varepsilon \bar{T} (\gamma_B \bar{B} + \delta_B \bar{B}_a)) \\
a_3 &= (\mu_H + \alpha \bar{T}) (\mu_B + \gamma_B \bar{T}) (\mu_B + \mu_B^d - \delta_B \bar{T}) + \left[(\mu_B + \gamma_B \bar{T}) + (\mu_E + \alpha \bar{T}) + \mu_B \right] + \varepsilon \gamma_B \bar{\delta} \\
a_4 &= \alpha \bar{T} (\mu_T + \varepsilon \bar{B}_a) (\mu_B + \gamma_B \bar{T}) (\mu_B + \mu_B^d - \delta_B \bar{T}) + \varepsilon \bar{T} (\mu_H + \alpha \bar{T}) \\
\times \left[\mu_B (\gamma_B \bar{B} + \delta_B \bar{B}_a) + \gamma_B \delta_B \bar{T} \bar{B}_a \right].
\end{cases}$$

All the Routh-Hurwitz conditions are satisfied: (1) $a_1 > 0$, (2) $a_3 > 0$, (3) $a_4 > 0$ and (4) $a_1a_2a_3 > a_3^2 + a_1^2a_4$

Isolated action of the cellular response

Case 2 – Cellular response only

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

Cellular response acting isolated – $\varepsilon = 0$

$$\begin{cases} \frac{d}{dt}T = \tau \left(\mu_{H} + \mu_{I}\right)I - \mu_{T}T \\ \frac{d}{dt}H = \lambda_{H} - \mu_{H}H - \alpha TH \\ \frac{d}{dt}I = \alpha TH - \left(\mu_{H} + \mu_{I}\right)I - \beta IC_{a} \\ \frac{d}{dt}C = \lambda_{C} - \mu_{C}C - \gamma_{C}CT \\ \frac{d}{dt}C_{a} = \gamma_{C}CT - \left(\mu_{C} + \mu_{C}^{d}\right)C_{a} + \delta_{C}C_{a}T \end{cases}$$

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

P^* has coordinates:

$$\begin{bmatrix} \bar{H} &= \frac{H_0}{1 + \alpha \bar{T}} \\ \bar{I} &= \frac{\mu_{HI} \alpha H_0 \bar{T}}{\left(1 + \alpha \bar{T}\right) \left(1 + \beta \bar{C}_a\right)} \\ \bar{C} &= \frac{C_0}{1 + \gamma_C \bar{T}} \\ \bar{C}_a &= \frac{\mu_{Cd} \gamma_C C_0 \bar{T}}{\left(1 - \delta_C \bar{T}\right) \left(1 + \gamma_C \bar{T}\right)}$$

 \bar{T} is solution of the equation

$$\frac{\left(\frac{\alpha}{\alpha_0}-1\right)-\alpha\bar{T}}{1+\alpha\bar{T}} = \frac{\beta\gamma_C C_0\bar{T}}{\left(1-\delta_C\bar{T}\right)\left(1+\gamma_C\bar{T}\right)}$$

All equations can be retrieved from general model by letting $\varepsilon = 0$ and n = 0 (or, $\tau \gg n$)

Local stability

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

The characteristic equation is

$$0 = \left(\mu_C + \mu_C^d - \delta_C \bar{T} + \psi\right) \left(\mu_C + \gamma_C \bar{T} + \psi\right) \left[\alpha \bar{T} \left(\mu_H + \mu_I + \beta \bar{C}_a + \psi\right) \left(\mu_H + (\psi + \mu_H + \mu_I + \mu_T + \beta \bar{C}_a) (\mu_H + \psi) \psi\right] + \beta \bar{I} \tau \left(\mu_H + \mu_I\right) \left(\mu_H + \alpha \bar{T} + \psi\right) \left[\left(\gamma_C \bar{C} + \delta_C \bar{C}_a\right) (\gamma_C + \psi) + \gamma_C \delta_C \bar{C}_a\right]$$

The Routh-Hurwitz conditions of ψ⁵ + ∑⁵_{i=1} a_iψ⁵⁻ⁱ = 0 are: (1) a_i > 0 (i = 1, 2, 3, 4, 5), (2) a₁a₂a₃ > a²₃ + a²₁a₄, and (3) (a₁a₄ - a₅) (a₁a₂a₃ - a²₃ - a²₁a₄) > a₅ (a₁a₂ - a₃)² + a₁a²₅
The condition (3) can be written as a₃ (a₁a₂ - a₃) > a²₁a₄, and, when all coefficients are positive (a_i > 0, for i = 1, ..., 5), then an implicit condition is a₁a₂ > a₃

This is not satisfied for a sufficiently higher values of δ_C . Limit cycles appear

Numerical simulations

Values of parameters

$$\begin{array}{cccc} \tau & \rightarrow 20 \\ & n & \rightarrow 1 \\ & \alpha & \rightarrow 3 \times \alpha_0 \\ & \lambda_H & \rightarrow 0.2 \\ & \lambda_B & \rightarrow 0.8 \\ & \lambda_C & \rightarrow 0.8 \\ & \mu_T & \rightarrow 0.06 \\ & \mu_H(\mu_I) & \rightarrow 0.01 \ (0.05) \\ & \mu_B(\mu_B^d) & \rightarrow 0.05 \ (0.2) \\ & \mu_C(\mu_C^d) & \rightarrow 0.05 \ (0.2) \\ & \gamma_B & \rightarrow 0.01 \\ & \gamma_C & \rightarrow 0.01 \\ & \delta_B & \rightarrow 0.05 \\ & \delta_C & \rightarrow 0.05 \\ & \beta & \rightarrow 0.1 \\ & \varepsilon & \rightarrow 0.1 \end{array}$$

Bifurcation diagram – I

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulati

The bifurcation diagram of \overline{T} , plus all other variables, varying α . A unique positive solution

The scales of vertical and horizontal axes must be multiplied by the factors shown in the legends to obtain the actual values (for instance, \overline{H} must be multiplied by the factor 10)

Bifurcation diagram – II

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulati

The bifurcation diagram of \overline{T} and the upper bound T_B as function of δ_B . A unique positive solution

The scales of vertical and horizontal axes must be multiplied by the factors shown in the legends to obtain the actual values (for instance, \overline{H} must be multiplied by the factor 10)

Dynamical trajectories – la

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulati

Dynamical trajectories of *T. cruzi* infection, except $\delta_C = 1.75$: The interaction of parasite with host cells (*T*, *H* and *I*). Regular oscillations occur The scales of vertical and horizontal axes must be multiplied by the factors shown in the legends to obtain the actual values

Dynamical trajectories – Ib

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

Dynamical trajectories of *T. cruzi* infection, except $\delta_C = 1.75$: The immune response cells (*B*, *B_a*, *C* and *C_a*). Regular oscillations occur The scales of vertical and horizontal axes must be multiplied by the factors shown in the legends to obtain the actual values

Dynamical trajectories – Ila

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulati

Dynamical trajectories of *T. cruzi* infection, except $\delta_C = 5 \times 10^3$: The interaction of parasite with host cells (*T*, *H* and *I*). Regular oscillations occur The scales of vertical and horizontal axes must be multiplied by the factors shown in the legends to obtain the actual values

Dynamical trajectories – IIb

lodel formulation Analysis of the general model Isolated action of the humoral response Isolated action of the cellular response Numerical simulation

Dynamical trajectories of *T. cruzi* infection, except $\delta_C = 5 \times 10^3$: The immune response cells (*B*, *B_a*, *C* and *C_a*). Regular oscillations occur The scales of vertical and horizontal axes must be multiplied by the factors shown in the legends to obtain the actual values

Conclusion

Conclusion

- The joint action of humoral and immune responses control *T. cruzi* infection. In general, parasitemia is contained at a lower but persistent level by immune responses, which can fluctuate in a weak humoral response. The model showed that sustained oscillations occurred when humoral response is less strong than cellular response
- Cellular response seems to be more effective (by killing infected cells) than humoral response. But the latter is important to avoid sustained oscillations
- After a strong immune response, effector cells must commit suicide in order to avoid self damage
- The model showed that immune response alone was not able to fade out *T. cruzi* infection, when the reproducibility of this parasite is greater than $1 (R_0 > 1)$. Biologically, however, we can define a critical level of circulating parasites below which they can be considered eliminated

Thank You